期刊文献+

非紧流形上抛物方程的椭圆型梯度估计

Elliptic-Type Gradient Estimate for a Parabolic Equation on Noncompact Manifolds
下载PDF
导出
摘要 给出完备非紧黎曼流形M上的抛物方程ut=△u+Xu+hu的正解的全局梯度估计,该估计与M的维数n无关.这里X是任意非零C 1向量场;h是定义在M×(0,+∞)上的非负函数,对于自变量x是C 1函数.作为应用,我们将给出该方程的解的Harnack估计. In this paper,we study a global gradient estimate for the positive solution to the following parabolic equation on a complete noncompact Riemannian manifold,where X is an any nonzero vector field,and h is a negative function defined on which is in the x-variable.As an application,the dimension-free Harnack estimate for the above parabolic equation(1.2) is proved.
作者 吴佳贤 黄琴
出处 《漳州师范学院学报(自然科学版)》 2010年第4期6-12,共7页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省教育厅A类科技项目(JA09202JA08193)
关键词 完备非紧流形 抛物方程 梯度估计 Harnack估计 Laplacian比较定理 complete noncompact manifold parabolic equation gradient estimate Harnack estimate Laplacian comparison theorem
  • 相关文献

参考文献6

  • 1R.S.Hamilton.A matrix Harnack estimate for the heat equation[J].Comm.Anal.Geom.,1993,1:113-126.
  • 2P.Souplet,Qi S.Zhang.Sharp gradient estimate and Yau's Liouville theoerm for the heat equation on noncompact manifolds[J].Bull.London Math.Soc.,2006,38:1045-1053.
  • 3Q.H.RUAN.Elliptic-Type gradient estimate for schr(o)dinger equations on noncompact manifolds[J].Bull.London Math.Soc.,2007,39:982-988.
  • 4Bakry-Emery D,Qian Z M.Volume comparison theorems without Jacobi fields[J].Theta Series in Advanced Mathematics,2005,4:115-122.
  • 5Qihua Ruan.Two rigidity theorems on manifolds with Bakry-Emery Ricci curvature[J].Proc.Japan Acad.,2009,85:71-74.
  • 6E.CALABI.An extension of E.Hopf's maximum principle with an application to Riemannian geometry[J].Duke Math.J.,1957,25:45-56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部