期刊文献+

基于属性值贡献率的朴素贝叶斯改进算法

An Improved Bayesian Algorithm Based on Contribution Rate of Attribute Value
下载PDF
导出
摘要 朴素贝叶斯分类是一种简单高效的方法.但是当属性独立性假设不成立时,有可能导致待测样本类别判断错误;且当待测样本到各类别的概率相同时,无法判断该样本类别,从而影响了它的分类准确率.本文提出基于属性值贡献率的朴素贝叶斯改进算法,利用待测样本的各个属性值在各类别的总贡献率判别该样本的类别.在蘑菇数据实验结果表明,该算法能有效提高分类的准确率. The Naive Bayesian is a simple and efficient way of classification.When the assumption of attribute independence does not hold,it possibly leads to misjudgment in types of the will-be-tested samples.When the will-be-tested samples have the same probabilities in all categories,it is unable to judge the type of samples.Those affect the accuracy in data's classification.An improved algorithm of Bayesian based on contribution rate of attribute value is proposed in the paper,that is,the type of samples will be judged by the total contribution rate of all attribute value of will-be-tested samples in all categories.The result of mushroom data experiments show that the improved algorithm can effectively improve the accuracy of data classification.
出处 《漳州师范学院学报(自然科学版)》 2010年第4期42-44,共3页 Journal of ZhangZhou Teachers College(Natural Science)
基金 国家自然科学基金项目(10971186) 福建省教育厅重点项目(JA10202)
关键词 分类 朴素贝叶斯原理 属性值贡献率 classification Bayesian principle the contribution rate of attribute value
  • 相关文献

参考文献3

二级参考文献11

  • 1程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.
  • 4曾黄麟.智能计算[M].重庆:重庆大学出版社,2004..
  • 5Sun Zonghai,Sun Youxian.Application of rough set to fault diagnose[C]//Proceedings of 4th World Congress on Intelligent Control and Automation,Shanghai,P.R.China,2002.
  • 6Han Jian-wei.Data mining epts and techniques[M].北京:机械工业出版社,2001.30-50.
  • 7Zheng Z,Webb G I.Lazy learning of Bayesian rules[J].Machine Learning, 2000,41 ( 1 ) : 53-84.
  • 8Webb G I,Pazzan J.Adjusted probability Naive Bayesian induction[C]// Proceedings of the 11th Australian Joint Conference on Artificial Intelligence.Berlin : Springer Verlag, 1998: 285-295.
  • 9Zhang H,Sheng S.Learning weighted Naive Bayes with accurate ranking[C]//Proceedings of the 4th IEEE International Conference on Data Mining,2004:567-570.
  • 10Hall M.A decision tree-based attribute weighting filter for Naive Bayes[J].Knowledge-Based Systems,2007,20( 1): 120-126.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部