期刊文献+

在险风险值估计方法的比较研究(英文) 被引量:1

Comparison Research of Value-at-Risk Estimation Methods
下载PDF
导出
摘要 金融数据呈现的厚尾性已达成共识。本文首先基于指数回归模型提出了一种厚尾分布的极值分位数估计方法,得到了在险风险值的估计公式。然后得到了上海上证指数、国债指数和企业债券指数的在险风险值的估计值,比较了他们的极值风险. It is well known that finance data tends to heavy-tailed.On the basis of an exponential regression model,this paper proposed an extreme quantile estimator method of heavy-tailed distribution and obtained the estimation formula of value-at-risk(VaR).Then,the estimations of value-at-risk(VaR) of the synthesized index of Shanghai,treasury and corporate bond indexes of China were obtained,and their extremal risk was compared.
作者 欧辉
出处 《经济数学》 北大核心 2010年第4期15-21,共7页 Journal of Quantitative Economics
基金 国家自然科学基金资助项目(10871064) 湖南省普通高校<计算与随机数学及其应用>重点实验室,开放基金资助项目(09K026) 湖南师范大学青年基金资助项目(71001)
关键词 厚尾分布 在险风险值 极值分位数 heavy-tailed distribution VaR extreme quantile
  • 相关文献

参考文献1

二级参考文献10

  • 1Mandelbrot B. The varietion of certain speculation prices[J]. J. of Business, 1963.
  • 2Philippe J B, Potters M. Price Comparison: Theory of Financial Risks: From Statistical Physics to Risk Management [ M ]. Cambridge: Cambridge University Press, 2000.
  • 3Bali T G. An extreme value approach to estimating volatility and value at risk[J]. J. of Business, 2003,76( 1 ) : 83-- 108.
  • 4Cebrian A C,Denuit M, Lambert P. Generalized pareto fit to the society of actuarie's large claims database[J]. North American actuarial J. ,2003, (3) : 18-36.
  • 5Embrechts P, Resnick S. Extreme value theory a.s a risk management tool[ J ]. North American actuarial J, 1999,3 (2) : 30 - 41.
  • 6Longin F M. From value at risk to stress testing: The extreme value approach[ J ]. J. Banking & Finance, 2000, (24) : 1097-- 1130.
  • 7Mcneil A J. Developing scenarious for future extreme losses using the peaks-over-threshold method[M]. Extremes and integrated risk management, UBS Warburg Press, 2000.
  • 8Davison A C,Smith R L. Models for excessances over high thresholds(with discussion)[J]. Journal of the Royal Statistical Society B, 1990,52(3) :393--442.
  • 9Choulakian V, Stephens M A. Goodness-of-fit tests for the generalized parato distribution[J]. Technometrics, 2001,43 (4) : 478-484.
  • 10封建强.沪、深股市收益率风险的极值VaR测度研究[J].统计研究,2002,19(4):34-38. 被引量:55

共引文献26

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部