期刊文献+

基于无网格法的反向器拓扑优化设计及性能测试

TOPOLOGY OPTIMIZATION DESIGNING AND PERFORMANCE TESTING OF INVERTER MECHANISMS USING MESHLESS METHOD
原文传递
导出
摘要 为了满足柔性机构的大变形特性,该文将无网格伽辽金法和拓扑优化理论相结合,提出了反向器的拓扑优化设计方法,并对按设计结果加工的机构进行了性能测试。在优化过程中,利用无网格法进行反向器的结构响应分析和敏度分析,从本质上满足了柔性反向器的非线性要求。根据设计结果制造了线性和非线性两种反向器,并对其进行了性能测试,测试结果表明,基于非线性无网格法的优化方法优于基于线性的优化方法。 In order to match the large-displacement character of compliant mechanisms,a nonlinear optimization method for designing inverter mechanisms is presented by combining the theory of the Element-free Galerkin method and topology optimization.The performance of the inverter produced according to the design result is tested.The structural response analysis and sensitivity analysis are carried out by using EFGM,which matches the natural geometrical nonlinear behavior of the inverter mechanisms.According to the topologies designed by linear and nonlinear meshless methods,two kinds of inverters are produced.The load-displacement responses of the inverters are tested.And the result is demonstrated that the non-linear EFGM is better for designing compliant inverter mechanisms than the linear EFGM.
出处 《工程力学》 EI CSCD 北大核心 2010年第A02期266-271,共6页 Engineering Mechanics
关键词 反向器 几何非线性 拓扑优化 无网格法 柔性机构 inverter mechanisms geometrically nonlinearity topology optimization meshless method compliant mechanisms
  • 相关文献

参考文献11

  • 1Bendsoe M P, Sigmund O. Topology optimization: Theory, methods, and applications [M]. Berlin, Heidelberg, New York: Springer, 2003.
  • 2隋允康,叶红玲,刘建信,陈实,宇慧平.追究根基的结构拓扑优化方法[J].工程力学,2008,25(A02):7-19. 被引量:19
  • 3Buhl T, Pedersen C B W, Sigmund O. Stiffness design of geometrically nonlinear structures using topology optimization [J]. Structural and Multidisciplinary Optimization, 2000, 19(2): 93 - 104.
  • 4Pedersen C B W, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms [J]. International Journal for Numerical Methods in Engineering, 2001, 50:2683-2705.
  • 5Bruns T E, Tortorelli D A. Topology optimization of nonlinear elastic structures and compliant mechanisms [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27): 3443 - 3459.
  • 6Sigmund O. Design of multiphysics actuators using topology optimization-Part Ⅰ One-material structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6577-6604.
  • 7Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
  • 8Zhou Jinxiong, Zou Wei. Meshless approximation combined with implicit topology description for optimization of continua [J]. Structural and Multidiscipline Optimization, 2008, 36(4): 347-353.
  • 9杜义贤,陈立平,罗震.基于无网格Galerkin方法的整体式柔性机构的多准则拓扑优化设计[J].固体力学学报,2007,28(1):102-108. 被引量:10
  • 10罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154

二级参考文献52

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部