期刊文献+

基于区域MRF和贝叶斯置信传播的SAR图像分割 被引量:15

SAR Image Segmentation Using Markov Random Field Based on Regions and Bayes Belief Propagation
下载PDF
导出
摘要 本文通过定义新的势函数,将贝叶斯置信传播算法和区域MRF模型有效结合,提出了一种SAR图像分割算法.考虑到SAR图像丰富的纹理信息,该算法对分水岭分割后的过分割区域提取纹理特征,在得到的区域邻接图上构建MRF模型,并加入区域灰度均值和方差作为区域特征,利用FCM聚类的初分割结果定义区域的关联势函数,并将区域特征引入到置信传播算法中,定义了新的交互势函数.该算法充分利用了SAR图像空间的背景信息,所定义的新的交互势函数能在促进分割结果区域一致性的同时较好保护边缘.实验结果表明,相对于其他MRF模型分割算法,本文算法能取得更好的分割效果. Through defining the new potential functions,a SAR image segmentation method is proposed based on Bayes belief propagation and regional MRF model.Considering the rich texture information of SAR images,texture features are extracted from the watershed over-segmented regions,and then an MRF model is defined over the region adjacency graph of the initially segmented regions.Features of each small region are denoted by the texture features,the average and variance of the gray level of all the pixels in each region.The associated potential function is defined by the initial segmentation obtained from FCM clustering with the region.The features of the small regions are introduced to the interaction potential function.The new interaction potential function can effectively protect edge and promote regional consistency at the same time.In the experiments,the proposed algorithm is compared with other MRF image segmentation algorithms using real SAR images.The experimental results show that the proposed method is more effective for SAR image segmentation.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2810-2815,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60702062 60703109 60970066 60972148 60971128) 国家863高技术研究发展计划(No.2008AA01Z125 2009AA12Z210) 国家部委科技项目资助项目(No.XADZ2008159) 中国博士后科学基金特别资助项目(No.200902587) 中央高校基本科研业务费专项资金资助(No.JY10000902001 JY10000902032 JY10000902038 JY10000902043) 高等学校学科创新引智计划(111计划)(No.B07048)
关键词 SAR图像 马尔科夫随机场 贝叶斯置信传播 交互势函数 SAR image Markov random field Bayes belief propagation interaction potential function
  • 相关文献

参考文献16

  • 1焦李成,王爽,侯彪.SAR图像理解与解译研究进展[J].电子学报,2005,33(B12):2423-2434. 被引量:6
  • 2朱俊,王世唏,计科峰,粟毅.一种适用于SAR图像的2维Otsu改进算法[J].中国图象图形学报,2009,14(1):14-18. 被引量:12
  • 3Rahma A.Al-Zahrani,Ali El-Zaart.SAR images segmentation using edge information[A].Proc IEEE lCCET 2010[C].Chengdu,China:IEEE,2010.4.496-499.
  • 4Xiangrong Zhang,Licheng Jiao,Fang Liu,Liefeng Bo,Maoguo Gong.Spectral clustering ensemble applied to texture features for SAR image segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(7):2126-2136.
  • 5田小林,焦李成,缑水平.基于PSO优化空间约束聚类的SAR图像分割[J].电子学报,2008,36(3):453-457. 被引量:12
  • 6Frédéric Galland,Jean-Marie Nicolas,Hèlène Sportouche,Muriel Roche,Florence Tupin,Philippe Réfrégier.Unsupervised synthetic aperture radar image segmentation using fisher distribulions[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):2966-2972.
  • 7Alexander Wong,Peter Yu,Wen Zhang,David A.Clausi.IceSynth Ⅱ:Synthesis of SAR sea-Ice imagery using regionbased posterior sampling[J].IEEE Geoscienc and Remote Sensing Letters,2010,7(2):348-351.
  • 8Y Weiss,W T Freeman.On the optimality of solutions of the max-product beliefpropagation algorithm in arbitrary graphs[J].IEEE Transactions on Information Theory,2001,47(2):723-735.
  • 9P Felzenszwalb,D Huttenlocher.Efficient belief propagation for early vision[J].International Journal of Computer Vision,2006,70(1):41-54.
  • 10Yu Li,Jonathan Li,Michael A.Chapman.Segmentation of SAR intensity imagery with a voronoi tessellation,bayesian inference,and reversible jump MCMC algorithm[J].IEEE Transactions on Geocience and Remote Sensing,2010,48(4):1872-1881.

二级参考文献111

共引文献29

同被引文献150

引证文献15

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部