期刊文献+

迫近算子在MR图像快速重建中的应用研究 被引量:3

Proximity Operator and Its Application in Rapid MR Image Reconstruction
下载PDF
导出
摘要 将迫近算子用于求解基于压缩感知理论的磁共振图像快速重建模型,得到了一个高效的迭代重建算法.将该算法用于部分K空间数据重建,并就算法对噪声的敏感性及算法对迭代初值的依赖性进行了仿真实验.实验结果表明,算法对噪声不敏感,对初值也没有显著的依赖性,该算法可由极少量K空间数据重建出高质量的MR图像. Proximity operator is used to solve the rapid magnetic resonance image reconstruction model based on compressed sensing theory and an efficient iterative algorithm is proposed.Experiments show that the proposed algorithm is not sensitive to noises,and that the algorithm does not depend on the choice of initial iterative values,and that faithful MR images can be reconstructed efficiently through the algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2827-2831,共5页 Acta Electronica Sinica
基金 山东省自然科学基金项目(No.ZR2009GM009) 曲阜师范大学校级科研项目(No.XJ200904)
关键词 磁共振成像 图像 重建 迫近算子 压缩感知 magnetic resonance imaging image reconstruction proximity operator compressed sensing
  • 相关文献

参考文献13

  • 1D Donoho.Compressed Sensing[J].IEEE Transa Inf Theory,2006,52(4):1289-1306.
  • 2E J Candes,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstrucion from highly incoplete frequency information[J].IEEE Trans Inf Theory,2006,52(2):489-509.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 5方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 6方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法[J].计算机研究与发展,2008,45(8):1402-1407. 被引量:33
  • 7M Lustig,D Donoho,J M Pauly.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58:1182-1195.
  • 8M Lustig,D L Donoho,J M Santos,J M Pauly.Compressinve sensing MRI[J].IEEE Signal Processing Magazine,2008.72.
  • 9J Nocedal,S J Wright.数值最优化[M].北京:科学出版社,2006.500-511.
  • 10P L Combettes,V R Wajs.Signal recovery by proximal forward-backward splitting[J].SIAM Journal on Multiscale Modeling and Simulation,2005,4(4):1168-1200.

二级参考文献162

  • 1尹忠科,王建英,Pierre Vandergheynst.在低维空间实现的基于MP的图像稀疏分解[J].电讯技术,2004,44(3):12-15. 被引量:12
  • 2尹忠科,王建英,邵君.基于原子库结构特性的信号稀疏分解[J].西南交通大学学报,2005,40(2):173-178. 被引量:36
  • 3朱近,夏德深,王平安.基于BPNN局部位移场拟合的心脏形变计算模型[J].计算机研究与发展,2005,42(12):2143-2148. 被引量:3
  • 4张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 5R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 6Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 7Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 8E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 9E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 10Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.

共引文献885

同被引文献49

  • 1王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory ,2006,52(4) : 1289 - 1306.
  • 3Candes E. Compressive sampling[ C ]//Proceedings of the International Congress of Mathematicians,2006 : 1433 - 1452.
  • 4Chen S S. Basis Pursuit[ D ]. Standford University,1995.
  • 5Mallat S G, Zhifeng Zhang. Matching pursuits with time-frequency dictionaries[ J]. IEEE Transactions on Signal Processing, 1993,41 (12) : 3397 - 3415.
  • 6Tropp J, Gilbert A. Signal Recovery From Random Measurements Via Orthogonal Matching Pursui [ J ]. IEEE Transactions on Information Theory, 2007,53 (12) :4655 -4666.
  • 7Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [ J ]. Foundations of Computational Mathematics, 2009,9 ( 3 ) :317 - 334.
  • 8Wei Dai, Milenkovic O. Subspace Pursuit for Compressive Sensing Signal Reconstruction[ J ]. IEEE Transactions on Information Theory, 2009,55 ( 5 ) :2230 -2249.
  • 9Needell D, Tropp J A. CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[ J]. Applied and Computational Harmonic Analysis ,2009,26:301 - 321.
  • 10Tsaig Y, Donoho D. Extensions of compressed sensing[J]. Signal Processing,2006,86(3):533 -548.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部