期刊文献+

延迟效应对寡头市场稳定性的影响

Effect of Delay on Stability of Monopoly Model
下载PDF
导出
摘要 根据Nash均衡理论,利用计算机模拟,研究了延迟效应对寡头市场稳定性的影响。发现Agiza等人的结论"延迟效应能增加系统的稳定性"不能被接受,并非所有延迟效应都能增加系统的稳定性,在延迟效应系数较大的情况下,延迟效应不利于系统的稳定性。通过对两步延迟效应的讨论,发现两步延迟效应系数之和存在一个最佳值,此时系统的稳定性最强。 Effect of delay on stability of the monopoly model is analyzed by computer simulation according to Nash equilibrium theory.It is found that the conclusion of Agiza et al.That delay can improve stability of monopoly model is not acceptable.That stability can be improved when delay exists is not true.Actually delay cannot benefit stability when the delay coefficient is large.The sum of delay coefficients has a best value that results in the best stability.
作者 孙振武
出处 《上海电机学院学报》 2010年第6期353-357,共5页 Journal of Shanghai Dianji University
基金 上海电机学院科研启动经费项目(08C405)
关键词 混沌 LYAPUNOV指数 寡头市场 延迟 chaos Lyapunov exponents monopoly delay
  • 相关文献

参考文献10

  • 1Cournot A.Researches into the principles of the theory of weahh[C] //Irwin Paper Back Classics in Economics.Paris:Hachette,1963:112-157.
  • 2Agiza H N,Elsadany A A.Chaotic dynamics in nonlinear duopoly game with heterogeneous players[J].Applied Mathematics and Computation,2004,149(3):843-860.
  • 3Zhang Jixiang,Da Qingli,Wang Yanhua.The dynamics of Bertrand model with bounded rationality[J].Chaos,Solitons & Fractals,2009,39(5):2048-2055.
  • 4Agiza H N,Elsadany A A.Nonlinear dynamics in the Cournot duopoly game with heterogeneous players[J].Physica A:Statistical Mechanics and its Applications,2003,320:512-524.
  • 5Hassan S Z.On delayed dynamical duopoly[J].Applied Mathematics and Computation,2004,151(1):275-286.
  • 6Agiza H N,Hegazi A S,Elsadany A A.The dynamics of Bowley's model with bounded rationality[J].Chaos,Solitons & Fractals,2001,12(9):1705-1717.
  • 7Elabbasy E M,Agiza H N,Elsadany A A.Analysis of nonlinear tripoly game with heterogeneous players[J].Computers Mathematics with Applications,2009,57(3):488-499.
  • 8Puu T.On the sfability of Cournot equilibrium when the number of competitors increases[J].Journal of Economic Behavior & Organization,2008,66(3/4):445-456.
  • 9Chen Z M,Djidjeli K,Price W G.Computing Lyapunov exponents based on the solution expression of the variational system[J].Applied Mathematics and Computation,2006,174(2):982-996.
  • 10Wolf A,Swift J B,Swinney H L,et al.Determining Lyapunov exponents from a time series[J].Physica D:Nonlinear Phenomena,1985,16(3):285-317.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部