期刊文献+

二维Quasi-geostrophic方程的一个新的达布变换

New Darboux Transformations for 2D Quasi-geostrophic Equations
下载PDF
导出
摘要 通过对流体力学中二维Qausi-geostrophic(QG)方程LAX对的研究,获得一个新的二维QG方程的达布变换。新的达布变换适用范围更广,有利于构造二维QG方程的解,还可在研究二维QG方程的爆炸性时提供新的帮助。 By studying LAX pairs of 2D qausi-geostrophic(QG) equations,we obtain new Darboux transformations of 2D QG equations.The application scope of Darboux transformations is expanded.It is useful in constructing new solutions to 2D QG equations.The discussion is helpful in studying non-blowup of 2D QG equations.
作者 靳鲲鹏
出处 《上海电机学院学报》 2010年第6期363-365,共3页 Journal of Shanghai Dianji University
基金 上海市高校选拔培养优秀青年教师科研专项基金项目(sdj08016)
关键词 二维Qausi-geostrophic方程 欧拉方程 LAX对 达布变换 非爆炸性 2D qausi-geostrophic(QG) equations Euler equations LAX pairs Darboux transformations non-blowup
  • 相关文献

参考文献11

  • 1Majda A J,Bertozzi A L.Vorticity and incompressible flow[M].Cambridge,UK:Cambridge University Press,2002.
  • 2Constantin P,Nie Q,Schorghofer N.Nonsingular surfacequasi-geostrophic flow[J].Physics Letters A,1998,241(3):168-172.
  • 3Constantin P,Majda A J,Tabak E.Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar[J].Nonlinearity,1994,7(6):1495-1553.
  • 4Deng J,Hou T Y,Yu X,et al.Level set dynamics and the non-blowup of 2D quasi-geostrophic equation[J].Methods of Analysis and its Applications,2006,13(2):157-180.
  • 5Li Y,Yurov A V.Lax pairs and darboux transformations for euler equations[J].Studies in Applied Mathematics,2003,111(1):101-113.
  • 6Li Y.Ergodic isospectral theory of the lax pairs of Euler equations with harmonic analysis flavor[J].Proceedings of the American Mathematical Society,2005,133(9):2681-2687.
  • 7楼森岳,李翊神.Exact Solutions of (2+1)-Dimensional Euler Equation Found by Weak Darboux Transformation[J].Chinese Physics Letters,2006,23(10):2633-2636. 被引量:3
  • 8Deng J,Ji M.Geometric structure and norrblowup of 2D Quasi-geostrophic equation[J].Journal of Fudan University:Natural Science,2008,47(2):224-231.
  • 9Hou T Y,Li R Blowup or no blowup? The interplay between theory and numerics[J].Physica D:Nonlinear Phenomena,2008,237(14-17):1937-1944.
  • 10Hou T Y.Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and NavierStokes equations[J].Acts.Numerics,2009,18:277-346.

二级参考文献24

  • 1Chavanis P H and Sommeria J 1997 Phys. Rev. Lett. 783302
  • 2Chavanis P H 2000 Phys. Rev. Lett. 84 5512
  • 3Grasso D et al 2001 Phys. Rev. Lett. 86 5051
  • 4Bergmans J and Schep T J 2001 Phys. Rev. Lett. 87 195002
  • 5Marshall Jet al 1997 J. Geophys. Res. Oceans (C3) 1025753
  • 6Canuto V M and Dubovikov M S 2005 Ocean Modelling 81
  • 7Girard C, Benoit R, Desgagne M 2005 Monthly Weather Rev. 133 1463
  • 8Huang T S, Ho C W and Alexander C J 1998 J. Geophys.Res.: Planets (E9) 103 20267
  • 9Haldane F D M and Wu Y 1985 Phys. Rev. Lett. 55 2887
  • 10Xu C Met a12005 Phys. Rev. D 71 024030

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部