期刊文献+

PID神经网络控制在全自动多叶光栅中的应用

Application of PID Neural Network to Dynamic Multi-leaf Collimator
原文传递
导出
摘要 为满足全自动多叶光栅在Sliding工作模式下对光栅叶片的控制,要求具有很快的加速度和良好的动态性能以及很高的位置控制精度,提出了一种适用于该模式下的速度—位置双闭环电机控制模型,采用了神经网络与数字PID相融合的控制算法,并对该控制模型进行了仿真验证。实验表明:采用PID神经网络的速度—位置双闭控制具有很高的控制精度和良好的动态性能,能有效满足全自动多叶光栅Sliding工作模式的控制要求。 In order to meet the demand of the Dynamic Multi-leaf Collimator, that collimator should have high acceleration, good dynamic performance and high accuracy of position control at Sliding working mode, a speed-position double closed-loop cybernation model is put forward. Neural network combined with digital PID is used. This model is simulated and verified. The results indicate that neural network PID can provide high acceleration, good dynamic performance, which have already meet the requirement of Dynamic Multi-leaf Collimator at Sliding mode.
出处 《世界科技研究与发展》 CSCD 2010年第6期766-768,778,共4页 World Sci-Tech R&D
关键词 全自动多叶光栅 双闭环控制 PID神经网络 dynamic multi-leaf collimator speed-position double closed-loop control PID neural network
  • 相关文献

参考文献8

  • 1ERIC J,HALL D,WUU C-S.Radiation-induced second cancers:the impact of 3D-CRT and IMRT[J].International Journal of Radiation Oncology Biology Physics,2003,56(1):83-88.
  • 2UNG C C,YORKE E,FUKS Z.From IMRT to IGRT:Frontierland or Neverland[J].Radiotherapy and Oncology,2006,78(2):119-122.
  • 3GUCKENBERGER M,MEYER J,WILBERT J,et al.Precision of Image-Guided Radiotherapy (IGRT) in Six Degrees of Freedom and Limitations in Clinical Practice[J].Strahlentherapie Und Onkologie,2007,183(6):307-313.
  • 4WIJESOORIYA K,BARTEE C.Determination of maximum leaf velocity and acceleration of a dynamic multi-leaf collimator:Implications for 4D radiotherapy[J].Medical Physics,2005,32(4):932-941.
  • 5WU H,SHARP G C,SALZBERG B.A finite state model for respiratory motion analysis in image guided radiation therapy[J].Physics in Medicine and Biology,2004,49:5357-5372.
  • 6KEALL P J,CATTELL H,POKHREL D,et al.Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system[J].International Journal of Radiation Oncology,Biology,Physics,2006,65 (5):1579-1584.
  • 7TACKE M B,NILL S.Real-Time Compensation of Target Motion with a Dynamic Multileaf CoUimator[J].IFMBE Proceedings,2009,25 (1):616-619.
  • 8孙志峻,黄卫清.超声电机驱动多关节机器人的类PID小波神经网络控制[J].机械工程学报,2009,45(3):215-221. 被引量:10

二级参考文献14

  • 1巫庆辉,邵诚.基于递归型小波神经网络的感应电动机伺服驱动系统自适应控制[J].机械工程学报,2005,41(2):71-76. 被引量:4
  • 2BAILAK G V, RUBINGER B, JANG M, et al. Advanced robotic mechatronics system: Emerging technologies for interplanetary robotics[C]// Canadian Conference on Electrical and Computer Engineering, May 2-5, 2004, Niagara Falls, Ontario, Canada. Dundas: IEEE, 2004: 2 025-2 028.
  • 3JANG M, DAWSON F, BAILAK G. Control system tor multiple joint robotic arm powered by ultrasonic motor[C]// Applied Power Electronics Conference and Exposition, APEC'04. Nineteenth Annual IEEE, February 22-26, 2004, Anaheim California, America. Piscataway, New Jersey: IEEE, 2004:1 844-1 848.
  • 4ZHANG Q, BENVENISTE A. Wavelet networks[J]. IEEE Transaction on Neural Networks, 1992, 3(6): 889-898.
  • 5XIA Changliang, TIAN Yang, LIU Dan, et al. Speed control ofbrushless DC motor based on single neuron PID and wavelet neural network[C]// IEEE International Conference on Control and Automation, May 30-Jtme 1, 2007, Guangzhou, China. Singapore: IEEE, 2007: 617-620.
  • 6HUI Li, HONG Zhangjin, CHEN Guo. PID control based on wavelet neural network identification and tuning and its application to fin stabilizer[C]//Proceedings of the IEEE International Conference on Mechatronics & Automation, July 29-Aug. 1, 2005, Ontario, Canada. Ontario: IEEE, 2005: 1 907-1 911.
  • 7HUI Li, CHEN Guo, HONG Zhangjin. Hybrid control of inverse model wavelet neural network and PID and its application to fin stabilizer[C]// Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China, 2006: 436-440.
  • 8WAI R J, CHANG J M. Intelligent control of induction servo motor drive via wavelet neural network [J]. Electric Power Systems Research, 2002, 61.- 67-76.
  • 9ASHRAF M H. Wavelet neural network load frequency controller [J]. Energy Conversion and Management, 2005, 46: 1 613-1 630.
  • 10JAMES C, CHEN G, OGMEN H. Fuzzy PID controller: Design, performance evaluation, and stability analysis[J] Information Sciences, 2000, 123(3-4).. 249-270.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部