期刊文献+

一种新的聚类组合算法 被引量:2

A new algorithm for clustering combination
原文传递
导出
摘要 提出一种新的基于非负矩阵分解(NMF)方法的聚类组合算法(NMFCCA).该算法首先采用K-均值算法作为基聚类器,然后使用NMF方法从基聚类器输出结果中提取数据对象的关键特征,最后在关键特征空间中划分数据对象,生成最终结果.在人工数据集和真实数据集上的实验表明,所提出的算法是有效可行的. A new algorithm based on non-negative matrix factorization(NMF) is proposed.It first generates multiple clusterers by K-means algorithm.Then the features of the data objects are extracted by utilizing NMF method.Finally,a single consolidated clustering is built up by dividing the data objects in feature space.According to experiments based on artificial data sets and real data sets,the result shows that the proposed algorithm is feasible and effective.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期819-823,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01283 2009J01248)
关键词 非负矩阵分解 聚类分析 聚类组合 non-negative matrix factorization clustering analysis clustering combination
  • 相关文献

参考文献2

二级参考文献16

  • 1[1]Jain A K, Dubes R C. Algorithms for Clustering Data. Prentice Hall, 1988
  • 2[2]Inderjit S D, Dharmendra S M. Concept Decompositions for Large Sparse Text Using Clustering. Machine Learning, 2001,42(1): 143-175
  • 3[3]Hinneburg A, Aggarwal C C, Keim D A. What is the Nearest Neighbor in High Dimensional Spaces. In: Proceedings of the VLDB Confe- rence, 2001
  • 4[4]Lee D, Seung H. Learning the Parts of Objects by Non-negative Matrix Factorization. Nature, 1999, 401:788-791
  • 5[5]Lee D, Seung H. Algorithms for Non-negative Matrix Factorization. Adv. Neural Info. Proc. Syst., 2001,13:556-562
  • 6[6]Inderjit S D, Dharmendra S M. Concept Decompositions for Large Sparse Text Using Clustering. Machine Learning, 2001, 42(1):143-175
  • 7A Fred. Finding Consistent Clusters in Data Partitions[ C]. Proceedings of the 2nd International Workshop on Multiple Classifier Systems, Volume 2096 of Lecture Notes in Computer Science, Springer, 2001. 309-318.
  • 8A K Jain, M N Murty and P J Flynn. Data Clustering: A Review [ J ]. ACM Computing Surveys, 1999,31 (3) :264-323.
  • 9A Fred and A K Jain. Combining Multiple Clusterings Using Evidence Accumulation [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005,27(6): 835-850.
  • 10T Dietterich. Ensemble Methods in Machine Learning [ C ]. Proceedings of the 1 st International Workshop on Multiple Classifier Systems. 2000. 1-15.

共引文献12

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部