期刊文献+

基于改进型免疫遗传算法对网格中独立任务调度问题的研究 被引量:2

Independent task scheduling based on improved immune genetic algorithm in grid
原文传递
导出
摘要 在研究现有任务调度算法的基础上,借鉴生物免疫系统原理中抗体多样性产生及保持机理,定义了基于抗体的矢量距离、亲合力及浓度相关的选择概率,这样可以在进化过程中保留优秀个体,同时抑制抗体群陷于同一极值而停止进化的早熟现象;另一方面,提出父子竞争(PCC)交叉算子和基于浓度调节机制的变异概率,提高抗体群进化速度的同时保留优秀抗体.仿真实验结果表明,算法与其它调度算法比较,更能有效地实现资源的分配,可以成功应用于网格环境下独立任务调度. Based on the research of existing scheduling algorithms,this paper introduces the mechanism of producing and preserving the diversity of antibodies in organismal immune system into evolutionary algorithm,the selection probability based on the distance vector,affinity and concentration is defined,so it can retain high quality anti-bodies and inhibit their prematurity in the process of evolution.On the other hand,this paper presents PCC(Father and Son Competition) crossover and mutation probability based on concentration adjustment mechanism improving the speed of evolution and retaining high quality antibodies.Simulation results show that this algorithm is more effective to the allocation of resources compared with other algorithms,it can be successfully applied to the independent task scheduling in grid.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期830-835,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871221 60673161) 福建省自然科学基金重点资助项目(A0820002) 福建省自然科学基金资助项目(2009J01284) 教育部科学技术研究重点基金资助项目(206073) 福建省科技创新平台计划基金资助项目(2009J1007) 福建省教育厅科研资助项目(2007JB07024)
关键词 网格 异构环境 免疫遗传算法 任务调度 grid heterogeneous environmenti mmune genetic algorithm task scheduling
  • 相关文献

参考文献13

  • 1Braun T, Siegel H, Beck Netal. A comparison study of static mapping heuristics for a class of meta - tasks on heterogeneous computing systems [ C ]//8th IEEE Heterogeneous Computing Workshop. 1999:15 -29.
  • 2Moreno R. Job scheduling and resource management techniques in dynamic grid enviroment[ C ]//1st European Across Grids Conference. Santiago : [ s. n. ] , 2003.
  • 3Yarkhan A, Dongarra J. Experiments with scheduling using simdated annealing in a grid enviroment [ C ]//Proceedings of Grid Computing. Baltimore : [ s. n. ], 2002.
  • 4Wu M Y, Shu W, Zhang H. Segmented min - rain : a static mapping algorithm for meta- tasks on heterogeneous computing systems [ C ] //9th IEEE Heterogeneous Computing Workshop. 2000 : 375 - 385.
  • 5Yarkhan A, Dongarra J. Experiments with scheduling using simulated annealing in a grid enviroment[ C]//Proceedings of Grid Computing. Baltimore : [ s. n. ], 2002.
  • 6Di Martino V, Miliotti M. Sub -optimal scheduling in a grid using genetic algorithm[J]. Parallel Computing, 2004, 30(5/6) : 553 - 565.
  • 7Yao W S. Genetic scheduling on minimal processing elements in the grid [ M]. Berlin: Springer- Verlag, 2002.
  • 8Wang L, Jiao L C. The immune genetic algorithm and its convergence [ C ]//Signal Processing Proceedings IC -SP98. 1998: 1 347 - 1 350.
  • 9曹先彬,刘克胜,王煦法.基于免疫遗传算法的装箱问题求解[J].小型微型计算机系统,2000,21(4):361-363. 被引量:33
  • 10崔逊学,李淼,方廷健.基于免疫原理的多目标进化算法群体多样性研究[J].模式识别与人工智能,2001,14(3):291-296. 被引量:21

二级参考文献16

  • 1陈贤富.遗传优化的理论和方法研究,中国科学技术大学博士学位论文[M].-,1996.89-109.
  • 2Moreno R.Job scheduling and resource management techniques in dynamic grid enviroment[C]//1st European Across Grids Conference, 2003.
  • 3Casanova H,Legrand A.Heuristics for scheduling parameter sweep applications in Grid enviroments[C]//Proc of the 9th Heterogeneous Computing Workshop(HCW2000), Cancun, Mexico, 2000: 349-363.
  • 4Buyya R,Abramson D.An architecture for a resource management and scheduling system in a global computational grid[C]//Proc of the HPC ASIA2000,2000.
  • 5Yarkhan A,Dongarra J.Experiments with scheduling using simulated annealing in a grid enviroment[C]//Proc of Grid Computing,Baltimore, 2002.
  • 6Abraham A,Buyya R.Nature's heuristics for scheduling jobs on computational grids[C]//The 8th Int'l Conf on Advanced Computing and Communications(ADCOM 2000), Cochin, India, 2000.
  • 7Casanova H,Obertelli G.The apples parameter sweep template:user-level middleware for the gridp[C]//The Super Computing Conference, 2000.
  • 8Vincenzo D M.Schduling in a grid computing enviroment using genetic algorithm[C]//Marco Mililoti the 16th Int'l Parallel and Distributed Processing Symp(IPDPS2002), USA, 2002.
  • 9Vincenzo D M,Mililotti M.Sub-optimal scheduling in a grid using genetic algorithm[J].Parallel Computing,2004,30(5/6):553-565.
  • 10Zomaya A Y,Teh Y H.The observations on using genetic algorithm for dynamic load-Balancing[J].IEEE Trans on Parallel and Distributed Systems,2001,12(9) :899-911.

共引文献156

同被引文献18

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2马立肖,王江晴.遗传算法在组合优化问题中的应用[J].计算机工程与科学,2005,27(7):72-73. 被引量:26
  • 3Alessio G, Philippe C. Two models of immunization for time de- pendent optimization 0-7803-6583-6/00[ Z]. IEEE 2000.
  • 4GEELAN J. Twenty-one experts define cloud computing [ EB/OL]. [2015-03-08]. http://www, ulitzer, com/?q = node/612375.
  • 5MELL P M, GRANCE T. The NIST definition of cloud computing [ J]. Communications of the ACM, 2011,53(6) : 50.
  • 6ZHANG S, CHEN X, ZHANG S, et al. The comparison between cloud computing and grid computing [ C]//Proceedings of the 2010 International Conference on Computer Application and System Modeling. Piscataway, NJ: IEEE, 2010, 11:72-75.
  • 7SADASHIV N, KUMAR S M D. Cluster, grid and cloud computing: a detailed comparison [ C]//Proceedings of the 2011 6th International Conference on Computer Science and Education. Piscataway, NJ: IEEE, 2011:477-482.
  • 8VERMA A, KUMAR P. Independent task scheduling in cloud computing by improved genetic algorithm [ J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2(5) : 111 - 114.
  • 9CHENG Y C, ROBERTAZZI T G. Distributed computation with communication delay (distributed intelligent sensor networks) [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24 (6):700 -712.
  • 10Divisible (partitonable) loading scheduling research [ EB/OL]. [ 2015-10-12]. http://www, ee. sunysb, edu/- tom/dlt.html.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部