摘要
在研究现有任务调度算法的基础上,借鉴生物免疫系统原理中抗体多样性产生及保持机理,定义了基于抗体的矢量距离、亲合力及浓度相关的选择概率,这样可以在进化过程中保留优秀个体,同时抑制抗体群陷于同一极值而停止进化的早熟现象;另一方面,提出父子竞争(PCC)交叉算子和基于浓度调节机制的变异概率,提高抗体群进化速度的同时保留优秀抗体.仿真实验结果表明,算法与其它调度算法比较,更能有效地实现资源的分配,可以成功应用于网格环境下独立任务调度.
Based on the research of existing scheduling algorithms,this paper introduces the mechanism of producing and preserving the diversity of antibodies in organismal immune system into evolutionary algorithm,the selection probability based on the distance vector,affinity and concentration is defined,so it can retain high quality anti-bodies and inhibit their prematurity in the process of evolution.On the other hand,this paper presents PCC(Father and Son Competition) crossover and mutation probability based on concentration adjustment mechanism improving the speed of evolution and retaining high quality antibodies.Simulation results show that this algorithm is more effective to the allocation of resources compared with other algorithms,it can be successfully applied to the independent task scheduling in grid.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期830-835,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871221
60673161)
福建省自然科学基金重点资助项目(A0820002)
福建省自然科学基金资助项目(2009J01284)
教育部科学技术研究重点基金资助项目(206073)
福建省科技创新平台计划基金资助项目(2009J1007)
福建省教育厅科研资助项目(2007JB07024)
关键词
网格
异构环境
免疫遗传算法
任务调度
grid
heterogeneous environmenti
mmune genetic algorithm
task scheduling