期刊文献+

细胞色素P450配体通道的研究进展 被引量:1

Advances in the ligand channels of cytochrome P450s
原文传递
导出
摘要 细胞色素P450(CYP)是一类含亚铁血红素的酶,不但能催化内源性底物的生物合成和代谢,而且对外源性化合物的代谢、激活以及降解毒性等起着重要作用.P450也是人体内最主要的药物代谢酶,能催化代谢约75%的临床药物.已有的P450酶晶体结构显示,绝大多数酶呈现闭合的构象,其催化活性位点位于血红素上方且深埋于蛋白质的中心,没有明显的通道用于配体进出活性中心.因此一个有趣而重要的问题是,配体如何进出酶的活性中心达到被氧化或发生抑制作用?近年来,关于P450酶配体通道的研究取得了显著进展.本文重点综述了通道研究的实验方法及6类P450酶可能存在的通道和作用机制,并对其未来的发展方向进行了展望. Cytochrome P450s(CYPs) are heme-containing monooxygenases that play critical roles in the biosynthesis and degradation of many physiologically important compounds,and in the metabolism and detoxification of xenobiotics.Currently,the available crystal structures of CYPs exhibit similar three-dimensional structural folds at the gross level.The active site of CYPs is buried deep within the center of the protein and above the heme cofactor.Because the active site is inaccessible to the surrounding bulk solvent,the question of how the ligand enters/exits the buried active site remains unresolved.The issue of the ligand access/egress channel in P450s has attracted significant attention in recent years.A complete review of major experimental methods and possible ligand channels of 6 typical P450 enzymes is presented in this review,and further research focuses are also discussed.
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第3期189-197,共9页 Chinese Science Bulletin
基金 上海市自然科学基金(10ZR1407000) 华东理工大学优秀青年教师基金(YC0157115) 新世纪优秀人才支持计划(NCET-08-0774) 中央高校基本科研业务费专项资金(WY1014010)资助项目
关键词 细胞色素P450 分子动力学 拉伸动力学 随机加速动力学 定点突变 cytochrome P450 molecular dynamics steered molecular dynamics random acceleration molecular dynamics site-directed mutagenesis
  • 相关文献

参考文献1

二级参考文献84

  • 1Kirchheiner J, Brockmoller J, Rohde W, et al. Clin. Pharmacol. Ther., 2002, 71:286--296.
  • 2Scott E E, White M A, Stout C D, et al. J. Biol. Chem., 2004, 279 : 27294--27301.
  • 3Crespi C L, Miller V P. Pharmaeogeneties, 1997, 7:203--210.
  • 4Higashi M K, Veenstra D L, Srinouanprachanh S L, et al. JAMA, 2002, 287:1690--1698.
  • 5Rettie A E, Haining R L, Levy R H, et al. Epilepsy Res. 1999, 35 : 253--255.
  • 6Wester M R, Yano J K, Griffin K J, et al. J. Biol. Chem., 2004, 279 : 35630--35637.
  • 7Gotoh O. J. Biol. Chem., 1992, 267:83--90.
  • 8Sullivan-Klose T H, Ghanayem B I, Goldstein J A, et al. Pharmacogenetics, 1996, 6(4): 341--349.
  • 9Imai J, Ieiri I, Mamlya K, et al. Pharmacogenetics, 2000, 10: 85--89.
  • 10Gaedig K A, Casley W L, Tyndale R F, etal. Can. J. Phys. Pharrnacal., 2001, 79:841--847.

共引文献2

同被引文献14

  • 1Szejtli J. Introduction and general overview of cyclodex- trin chemistry[J]. Chem Rev, 1998,98(5) : 1743-1754.
  • 2Howard L R,Brownmiller C, Prior R L, et al. Improved stability of chokeberry juice anthocyanins by beta-cyclo- dextrin addition and refrigeration [J ]. J Agric Food Chem,2013,61(3):693-699.
  • 3Kayaci F, Ertas Y, Uyar T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsula- ted in electrospun polymeric nanofibers[J]. J Agric Food Chem ,2013,61 (34) :8156-8165.
  • 4Sanchez-Hernandez L,Serra N S,Marina M L,et al. En- aatiomeric separation of free L- and D-amino acids in hydrolyzed protein fertilizers by capillary electrophoresis tandem mass spectrometry[J]. J Agric Food Chem, 2013,61 ( 21 ) .. 5022-5030.
  • 5Nakagawa Y, Saburi W, Takada M, et al. Gene cloning and enzymatic characteristics of a novel gamma-cyclo- dextrin- specific cyclodextrinase from alkalophilic Bacillus clarkii 7364 [J]. Biochim Biophys Acta, 2008, 1784 (12) : 2004-2011.
  • 6Ferret M, Beloqui A, Golyshina O V, et al. Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome [J]. Biotechnol J, 2007,2 (2) 207-213.
  • 7Costa H, Distefano A J, Marino-Buslje C, et al. The resi- due 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase E J. Appl Microhiol Biotechnol,2012,94(1) .. 123-130.
  • 8Teng Y B,]iang Y l,He Y X,et al. Structural insights into the substrate tunnel of Saccharomyces cerevisiae carbonic anhydrase Ncel03[J]. BMC Struct Biol, 2009, 9:67.
  • 9Sikorski P,Sorbotten A, Horn S J,et al. Serratia marcescens ehitinases with tunnel- shaped substrate- binding grooves show endo activity and different degrees of proeessivity during enzymatic hydrolysis of chitosan [J]. Biochemistry, 2006,45(31 ) : 9566-9574.
  • 10Stepankova V, Khabiri M, Brezovsky J, et al. Expansion of access tunnels and active-site cavities influence activ- ity of haloalkane dehalogenases in organic cosolvents [J]. Chembiochern,2013,14(7) :890-897.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部