摘要
研究Dirichlet问题-■=λ(u^p+u^q),u(0)=u(1)=0,其中1<p<q<+∞,参数λ>0,得到了在1<p<q<p+1条件下,存在λ*>0,当λ≤λ*时,此方程无正解;当λ>λ_*时,此方程恰好有一个正解.
We Study the exact number of positive solutions to the problem for the one-dimensional prescribed mean curvature equation -(u'/(1+u'2)(1/2))'=λ(u^p+u^q),u(0)=u(1)=0,with 1pqp +1.We find aλ*0,so that ifλ≤λ*,this problem has no positive solution,and ifλλ*,then this problem has one positive solution.
出处
《黄冈师范学院学报》
2010年第6期32-35,共4页
Journal of Huanggang Normal University
基金
国家自然科学基金(10671133)
关键词
广义平均曲率方程
正解
精确个数
precribed mean curvature equation
positive solution
exact number