期刊文献+

植物半胱氨酸合成及调控研究进展 被引量:17

Advancement in Research on Synthesis and Regulation of Cysteine in Plants
原文传递
导出
摘要 硫是植物重要的营养元素。植物将氧化态硫吸收并还原后,首先合成半胱氨酸使其进入各种代谢途径。合成半胱氨酸的两种酶——丝氨酸乙酰转移酶和O-乙酰丝氨酸硫醇裂合酶均由多基因家族编码,并能可逆的结合形成二酶复合物进行有效的合成调节。本文对近年来半胱氨酸合成相关酶表达、定位、活性调控及转基因效果研究进展作了简要介绍,并对将来需要重点研究的方面作了展望。 Sulfur is an essential element that is taken up by plants in the oxidation state form, reduced to H2S, and first incorporated into cysteine before involving metabolic processes. Cysteine synthesis occurs through two sequential reactions catalyzed by serine acetyltransferase (SAT) and O-acetylserine(thiol)lyase (OAS-TL), both of which are encoded by multigene families, and reversibly form a dienzyme complex to play a regulatory role. In this review, we summarize the recent progress made in the understanding of Cys synthesis, including the isoform expression, localization, activity regulation as well as efficiency of genetic transformation. Finally, aspects of the particularly important research in the future are suggested.
出处 《植物生理学报》 CAS CSCD 北大核心 2011年第1期37-48,共12页 Plant Physiology Journal
基金 甘肃省教育厅科研项目(1008B-07)
  • 相关文献

参考文献4

二级参考文献72

  • 1Ball, L., et al. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell. 16, 2448-2462.
  • 2Bick, J.A., Setterdahl, A.T., Knaff, D.B., Chen, Y., Pitcher, L.H., Zilinskas, B., and Leustek, T. (2001). Regulation of the plant-type 5'-adenylylsulfate reductase by oxidative stress. Biochemistry. 40, 9040-9048.
  • 3Buwalda, F., Stulen, I., de Kok, L., and Kuiper, P.J.C. (1990). Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. Ⅱ. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole. Physiol. Plant. 74, 663-668.
  • 4Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. (2006). Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141,446-455.
  • 5Cobbett, C.S., May, M.J., Howden, R., and Roils, B. (1998). The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J. 16, 73-78.
  • 6Creissen, G., et al. (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco paradoxically causes increased oxidative stress. Plant Cell. 11, 1277-1291.
  • 7Dixon, D.P., Skipsey, M., Grundy, N.M., and Edwards, R. (2005). Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol. 138, 2233-2244.
  • 8Droux, M. (2004). Sulfur assimilation and the role of sulfur in plant metabolism, a survey. Photosynth. Res. 79, 331-348.
  • 9Edwards, R., Blount, J.W., and Dixon, R.A. (1991). Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta. 184, 403-409.
  • 10Forde, B.G., and Lea, RJ. (2007). Glutamate in plants: metabolism, regulation, and signalling. J. Exp. Bot. 58, 2339-2358.

共引文献25

同被引文献294

引证文献17

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部