期刊文献+

关于Sobolev空间的等价模定理的一个证明 被引量:1

Sobolev space on the equivalent modulus of a theorem proved
下载PDF
导出
摘要 Sobolev空间的等价模定理是现代数学理论研究的重要工具,利用Sobolev嵌入定理和Poincar不等式定义Sobolev空间上的一个结构更为简单的新范数,并证明了其与原范数的等价性. The theorem of the equivalence of norms for class of Sobolev space has been an important fool to study modern theory of mathematics.In this paper,A new norm that has the simple structure is definted using the Sobolev imbedding theorem and the Poincaré inequality,and the equivalence with the before norm is proved.
机构地区 河南科技学院
出处 《河南科技学院学报》 2010年第4期95-97,共3页 Journal of Henan Institute of Science and Technology(Natural Science Edition)
关键词 SOBOLEV空间 Poincar不等式 等价范数 Sobolev space poincaré's inequality quivalent norms
  • 相关文献

参考文献8

二级参考文献14

  • 1E. B. Fabes, C. E. Kenig, R. P. Serapioni. The local regularity of solutions of degenerate elliptic equations[J]. Comm. in Part. Diff. Eq. 1982,7(1):77-116.
  • 2E. M. Stein. Harmonic Analysis[M]. Princeton University Press, Princeton New Jersey ,1993.
  • 3Amick C J. Some renmrks on Rellich' s theorem and the Poincare inequality[J]. J London Mathematics Society, 1978,18( 2 ) : 319-328.
  • 4Edmunds D E, Evans W D. Spectral Tneory and embedings of Sobolev spaces[J]. Quarterly J Mathematics Oaford Series, 1979,30(2) :431-453.
  • 5Edmunds D E,Evans W D. Spectral Theory and Differential Operators[M]. Oxford:Oxford University Press, 1987,1-50.
  • 6Hurri R. The weighted Poincare inequalities[J]. Mathematics Scand, 1990,67(1):145-160.
  • 7Kufner A. Weighted Sobolev Spaces[M]. Wiley: Wiley Chichester Press, 1985,1-100.
  • 8Kufner A, Opic B. How to define reasonably weighted Sobolev spaces[J]. Commentarii Mathematics University Coarlinae, 1984,25(3) : 537-554.
  • 9Edmunds D E, Opic B. Weighted Poincare and friedrichs inequalitics[J]. J London Mathematics Society, 1993,47(2):79-96.
  • 10Edmunds D E, Opic B, Pick L. Poincare and friedrichs inequalities in abstract Sobolev spaces[J].Mathematics Proceeding Cambridge Philosophy Society, 1993,113(1) :355-379.

共引文献3

同被引文献7

  • 1王万义,孙炯,郑志明.加权Sobolev空间中的Poincaré不等式[J].应用数学和力学,2006,27(1):112-118. 被引量:4
  • 2陈恕行.一类Sobolev不等式及其应用.工程数学学报,1985,2(2):37-45.
  • 3张恭庆 林源渠.泛函分析讲义[M].北京:北京大学出版社,1987.226.
  • 4Deny J,Lions-J L.Les espacese du type de Beppo Levi[M].Grenoble :Ann lnst Fouries, 1955:305-370.
  • 5Yosida K.Functicmal Analysis[M].New York : Springer-Verlag, 1980.
  • 6Adams R.Sobolev Space[M].New York : Academic Press,2003.
  • 7胡春洪.加权Sobolev空间的完备性[J].数学杂志,2004,24(3):249-252. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部