期刊文献+

基于超球面支持向量机的丝杠故障诊断技术 被引量:6

Fault diagnosis technology for NC machine screw based on hyper-sphere support vector machines
下载PDF
导出
摘要 针对高档数控机床丝杠故障样本不易获取以及样本分布不均的问题,提出了一种用小波包分解和超球面支持向量机进行分类的丝杠故障智能诊断技术。该方法将振动信号小波包分解后的频带能量作为特征向量,输入到超球面支持向量机分类器进行故障识别。通过改变相关参数,研究了模型参数选择在构造超球面支持向量机中的重要作用。试验结果表明,建立的超球面支持向量机模型能够有效地对机床丝杠故障进行诊断。 It was difficult to obtain fault samples and the samples were distributed unevenly in Numerical Control(NC) machine tool screw.To deal with these problems,a novel method for screw fault diagnosis based on wavelet packet decomposition and Hyper-Sphere Support Vector Machines(HSSVM) classifier was put forward.The decomposed frequency band energy of vibration signal was selected as feature vectors and was inputted to HSSVM classifier which realized faults pattern recognition.The important role of model parameters selection in HSSVM classifier constructions were studied by shifting correlation parameters.Test results showed that HSSVM classifier model structured could detect screw faults of NC machine tool effectively.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第12期2661-2667,共7页 Computer Integrated Manufacturing Systems
基金 国家科技重大专项资助项目(2009ZX04014-102-3,2010ZX04015-011) 中央高校基本业务费资助项目(SWJTU09CX019) 西南交通大学校基金资助项目(2008B13)~~
关键词 故障诊断 超球面 支持向量机 小波包 丝杠 数控机床 fault diagnosis hyper-sphere support vector machines wavelet packet screw numerical control machines
  • 相关文献

参考文献4

二级参考文献25

共引文献52

同被引文献90

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部