摘要
将粗集和支持向量机两种算法有机结合起来,建立了基于粗集与支持向量机的采空区自然发火预测模型。通过粗集对采空区自然发火影响因子进行预处理,将约简属性作为输入向量,利用支持向量机进行分类处理,选择了支持向量机核函数,利用变步长搜索法对支持向量机参数进行了优化。在对粗集-支持向量机方法的实验中,通过与支持向量机方法和神经网络方法的比较,发现在样本有限的情况下,基于粗集-支持向量机的采空区自然发火预测方法预测精度更高,训练速度更快,为采空区自然发火预测提供了一种新的方法。
A approach to predict spontaneous combustion in caving zone by using rough set and support vector machine(RS-SVM) was proposed.The original sample data were preprocessed with the knowledge reduction algorithm of RS theory,and the redundant condition attributes and conflicting samples were eliminated from the working sample set to reduce space dimension of sample data.Preprocessed sample data were used as training sample data of SVM.With choosing an appropriate kernel function,the SVM parameters were optimized by using variable step search algorithm.Finally,a comparison of the performance of RS-SVM with SVM and neural networks was carried out.The experimental results show that the prediction based on RS-SVM can improve the training speed and precision of classification when the samples are limited.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2010年第12期2100-2104,共5页
Journal of China Coal Society
基金
国家“十一五”科技支撑计划课题(2007baq00168-1)
江苏省高校自然科学基础研究资助项目(08KJD520022)