期刊文献+

基于多目标遗传算法的认知无线电频谱分配 被引量:4

Cognitive Radio Spectrum Allocation Based on Multi-objective Genetic Algorithm
下载PDF
导出
摘要 频谱共享技术是认知无线电的关键技术。基于多目标遗传算法,将认知无线电网络的最大系统效益和次用户间的最大比例公平作为目标函数,运用图论着色频谱分配模型,实现认知无线电中空闲频谱在次用户间的动态分配,并与颜色敏感图论着色算法(CSGC)进行了比较。通过仿真验证了该算法在认知无线电网络中进行频谱分配的可行性,且性能优于CSGC算法。 Spectrums' sharing is the key technology of cognitive radio.This paper based on multi-objective genetic algorithm to get idle spectrum dynamically allocate among the second users.This paper used the best network benefit and the most fairness as objective function,utilized graph coloring to implement spectrum allocation.Through comparing this algorithm with CSGC,this paper gets a result that genetic algorithm can be used in spectrum allocation in cognitive network and this algorithm is feasible and better than CSGC.
出处 《西南科技大学学报》 CAS 2010年第4期82-86,共5页 Journal of Southwest University of Science and Technology
基金 西南科技大学实验室开放基金(10xnkf11)
关键词 认知无线电 频谱分配 多目标遗传算法 Cognitive radio Spectrum allocation Multi-objective genetic algorithm
  • 相关文献

参考文献8

  • 1Raychaudhuria D.Cognitive Radio Technology:From Distributed Spectrum Coordination to Adaptive Network Collaboration[J].Pervasive and Mobile Computing,2008,(4):278-302.
  • 2PENG Chun-yi,ZHENG Hai-tao,ZHAO B Y.Utilization and Fairuess in Spectrum Assignment for Opportunistic Spectrum Access[J].Mobile Network Application,2006,(11):555-576.
  • 3HUANG Yu-qing,JIANG Hong,HU Hong,et al.Design of Learning Engine Based on Support Vector Machine in Cognitive Radio[C].International Conference ON Computational Intelligence and Software Engineering,2009,(1):661-664.
  • 4黄丽亚,刘臣,王锁萍.改进的认知无线电频谱共享博弈模型[J].通信学报,2010,31(2):136-140. 被引量:32
  • 5WANG Jiao,HUANG Yu-qing,JIANG Hong.Improved Algorithm of Spectrum Allocation Based on Graph coloring Model in Cognitive Radio[C].Proceedings-2009 WRI International Conference on Communications and Mobile Computing,2009,(3):353-357.
  • 6赵知劲,彭振,郑仕链,徐世宇,楼才义,杨小牛.基于量子遗传算法的认知无线电频谱分配[J].物理学报,2009,58(2):1358-1363. 被引量:55
  • 7陈劼,李少谦,廖楚林.认知无线电网络中基于需求的频谱资源分配算法研究[J].计算机应用,2008,28(9):2188-2191. 被引量:13
  • 8ZHENG H,PENG C.Collaboration and Fairness in Opportunistic Spectrum Access[J].IEEE ICC,2005,(5):3132-3136.

二级参考文献34

  • 1周殊,潘炜,罗斌,张伟利,丁莹.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报,2006,34(5):897-901. 被引量:33
  • 2FCC 2003 FCC Document ET Docket No. 03 - 108
  • 3Haykin S 2005 IEEE J. Sel. Area. Comm. 23 201
  • 4Akyildiz I F, Lee W, Vuran M C, Mohanty S 2006 Comput. Netw. 50 2127
  • 5Nie N, Comaniciu C 2005 Proc. IEEE DySPAN 269
  • 6Neel J, Reed J 2006 Proc. IEEE Milcom 1
  • 7Ji Z, Liu K J R 2007 IEEE Commun. Mag. 45 88
  • 8Huang J, Berry R, Honig M L 2006 ACM Mobile Networks and Applications (MONET) 11 405
  • 9Cao L, Zheng H 2005 Proc. IEEE DySPAN 475
  • 10Zheng H, Peng C 2005 Proc. 40th Annual IEEE International Conference on Communications (ICC) 5 3132

共引文献96

同被引文献28

  • 1廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58
  • 2HAYKIN S. Cognitive radio: brain-empowered wireless communications [ J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2) :201 -220.
  • 3MOTOLA J, MAGUIRE G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1990, 6 (4): 13-18.
  • 4MADHUSUDHAN R M, PAUL C. Time domain spectrum allocation using game theory for cognitive radios [ C]//Proceedings of the 9th International Conference on Mobile and Wireless Communications Networks. New York: IEEE, 2007, 101 - 105.
  • 5SARAYDAR C U, MANDAYM N B, GOODMAN D J. Efficient power control via pricing in wireless data networks[ J]. IEEE Transactions on Communications, 2002, 50(2):291-303.
  • 6HUANG J, BERRY R, HONIG M L. Auction-based spectrum sharing [ J]. Mobile Networks and Application, 2006, 11 (3) : 405 - 408.
  • 7PENG C, ZHENG H, ZHAO B Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access[ J]. Mobile Networks and Application, 2006, 11 (4) : 555 - 576.
  • 8ZHAO ZHIJIN, PENG ZHEN, ZHENG SHILIAN, et al. Cognitive radio spectrum allocation using evolutionary algorithms[ J]. IEEE Transactions on Wireless Communications, 2009, 8 (9) : 4421 - 4425.
  • 9EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory [ C]//Proceedings of the 6th International Symposi- um on Micromachine and Human Science. New York: IEEE, 1995:39-43.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization [ C] // Proceedings of the IEEE International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部