期刊文献+

综合肤色模型和多模板匹配增强Adaboost人耳检测

Combining Skin Color Model and Multi-template Matching for Enhancing Adaboost Ear Detection
下载PDF
导出
摘要 为克服传统的Adaboost算法出现的样本训练时间过长、过于依赖样本质量等问题,在训练不足及初始人耳定位不好的情况下,引入YCbCr肤色模型和多模板匹配技术策略对人耳进行精确定位。实验表明,改进后的人耳检测性能得到较大的提高,对动、静态人耳均能达到准确定位和检测的效果,算法的鲁棒性较好。 In order to overcome many problems caused by the traditional algorithm of Adaboost,such as the long training time,and excessive dependence on the quality of samples,we introduced the model of YCbCr and the strategies of multi-template matching to perform ear location accurately under the conditions of insufficient training with Adaboost and the bad positioning of raw detection.The experiments of practical detection show the performance of the proposed method is kept well and sufficiently whether under the static or the dynamic environments for ear detection.And the robustness of the algorithm is better.
作者 刘德凯 刘恒
出处 《西南科技大学学报》 CAS 2010年第4期91-95,共5页 Journal of Southwest University of Science and Technology
基金 2009四川省教育厅重点项目(08zd1109)资助
关键词 ADABOOST算法 肤色 多模板匹配 Adaboost algorithm Skin color Multi-template matching
  • 相关文献

参考文献10

二级参考文献62

  • 1Xiao De\|gui, Yu S heng\|sheng, Zhou Jing\|li School of Computer Science and Technol ogy, Huazhong University of Science and Technology,Wuhan 430074, Hubei, China.Motion Tracking with Fast Adaptive Background Subtraction[J].Wuhan University Journal of Natural Sciences,2003,8(01A):35-40. 被引量:1
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3王敏,穆志纯,徐正光,席德春.基于肤色模型的人耳检测系统[J].微计算机信息,2005,21(08S):51-53. 被引量:6
  • 4Viola P, Jones M J. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2001. 511-518
  • 5Leibe B, Schiele B. Analyzing appearance and contour based methods for object categorization. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Wisconsin, USA: IEEE, 2003. 409-415
  • 6Zhang W, Yu B, Zelinsky G J, Samaras D. Object class recognition using multiple layer boosting with heterogeneous features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 323-330
  • 7Shotton J, Blake A, Cipolla R. Contour-based learning for object detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 503-510
  • 8Opelt A, Pinz A, Zisserman A. A boundary-fragment-model for object detection. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 575-588
  • 9Opelt A, Pinz A, Zisserman A. Fusing shape and appearance information for object category detection. In: Proceedings of the 17th British Machine Vision Conference. Edinburgh, UK: Microsoft Lisa, 2006. 117-126
  • 10Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4): 349-361

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部