期刊文献+

一致收敛下极限系统回复性的研究 被引量:5

Recurrence of the Limit System under Uniform Convergence
下载PDF
导出
摘要 主要讨论一致收敛下极限系统的回复性集合与序列系统中相应集合之间的关系.首先得出了一致收敛下极限系统的不动点集、链回归点集和序列系统中相应集合的关系;接着给出强一致收敛下极限系统的正则回归点集、(拟)弱几乎周期点集以及非游荡点集与序列系统中相应集合之间的关系. This paper discusses the relationships of the recurrent set between the dynamical systems sequence and the limit system under uniform convergence.In the first place,it obtains the relationships of the fixed points set and the chain recurrent points set between the dynamical systems sequence and the limit system under uniform convergence;second,the relationships of the regularly recurrent points set(quasi)weakly almost periodic points set and non-wandering points set between the dynamical systems sequence and the limit system under the definition are given.
作者 王良平
出处 《广西师范学院学报(自然科学版)》 2010年第4期12-16,共5页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西壮族自治区研究生教育创新基金(2009106020701M35)
关键词 强一致收敛 链回归点集 正则回归点集 非游荡点集 strongly uniform convergence chain recurrent points set regularly recurrent points set non-wandering points set
  • 相关文献

参考文献4

二级参考文献16

  • 1RAGHIB A, KIFAH A. Uniform covergence and chaotic behavior[J]. Nonlinear Analysis,2006(65) : 933-937.
  • 2BLOCK L, COPPEL W. Dynamics in one dimealsion[ M]. Berlin: Springer-Verlag, 1992.
  • 3KOLYADA S, SNOHA L. Some aspects of topological transitivity-a survey[J]. Grazer Mathematische Berichte, 1997 (334) : 3-35.
  • 4WALTERS P. An introduction to ergodic theory[ M]. New York: Springer-Verlag, 1982.
  • 5Raghib Abu-Saris, Kifah Al-Hami, Uniform convergence and chaotic behavior [J]. Nonlinear Analysis, 2006,65 : 933-937.
  • 6Waiters P. An introduction to ergodic theory [M]. New York :Graduate Texts in Mathematics, 79, Springer-Verlag, 1982.
  • 7J. de Vries ,Elements of topological dynamics [M]. Mathematics and Its Applications 257, Kluwer Academic Publishers ,Dordrecht, 1993.
  • 8Block L S,Coppel W A. Dynamics in one dimension [M]. Berlin: Lecture Notes in Math-ematics, 1513, Spinger-Verge, 1992.
  • 9Kolyada S, Snoha L. Some aspects of topological transitivity-a survey [J]. Iteration theory (ECIT 94) (Opava), 3-35, Grazer Math. Ber. , 334, Karl- Franzens-Univ. Graz, Graz, 1997.
  • 10Vellkoop M, Berglund R. On intervals, transitivity = chaos [J]. Amer. Math. Monthly, 1994, 101 (4) : 353-355.

共引文献33

同被引文献15

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部