期刊文献+

基于遗传算法的野战通信网频率指配方法研究 被引量:7

Research into Frequency Assignment Method of Field Operation Communication Network Based on Genetic Algorithm
下载PDF
导出
摘要 随着军队信息化、数字化建设的迅速展开,越来越多的用频设备将投入到战场上,要想有效发挥用频设备的战斗力,必须通过有效手段统一规划战场频率资源,做到合理、有序用频。引入智能优化算法——遗传算法应用于野战通信网频率指配中,并根据野战通信网用频特点对算法进行改进,最后对算法进行仿真,取得了很好的结果。 With the rapid development of informationization and digitization construction of army,more and more equipments using frequency will be put into the battlefield.To exert the combat effectiveness of equipments using frequency effectively,it is necessary to plan the frequency resources in battlefield by available means in order to use frequency rationally and orderly.This paper introduces an intelligent optimization algorithm——genetic algorithm,applies the algorithm into the frequency assignment of the field operation communication network,and improves the algorithm according to the frequency usage characteristics of field operation communication network,lastly simulates the algorithm and acquires a good result.
出处 《舰船电子对抗》 2010年第6期49-53,共5页 Shipboard Electronic Countermeasure
关键词 遗传算法 频率指配 野战通信网 genetic algorithm frequency assignment field operation communication network
  • 相关文献

参考文献5

二级参考文献16

  • 1漆安慎 杜婵英.免疫的非线形模型[M].上海:上海科技教育出版社,1998..
  • 2[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 3[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 4[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 5[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 6[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.
  • 7[6]Schoenauer, M., Michalewicz, Z. Boundary operators for constrained optimization problems. In: Baeck, T., ed. Proceedings of the 7th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997. 322~329.
  • 8[7]Michalewicz, Z., Nazhiyath, G., Michalewicz, M. A note on usefulness of geometrical crossover for numerical optimization problems. In: Angeline, P., Baeck, T., eds. Proceedings of the 5th Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press, 1996. 325~331.
  • 9[8]Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. 3rd ed., New York: Springer\|Verlag, 1996.
  • 10Rudolph G. Convergence analysis of canonical genetic algorithms [J].IEEE Transactions on Neural Networks, 1994,5( 1 ) :96 - 101.

共引文献101

同被引文献48

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部