期刊文献+

阵列互耦条件下相干信源DOA估计算法研究 被引量:1

Research into DOA Estimation Algorithm of Coherent Signal Source under The Condition of Array Mutual Coupling
下载PDF
导出
摘要 针对阵列互耦条件下相干信源到达方向(DOA)估计的问题,利用均匀线阵互耦矩阵的带状循环特性及对称Toeplitz性,提出了一种基于改进的空间平滑算法的信源DOA估计算法。该算法无需阵元的互耦参数信息,只需一维谱峰搜索,避免了通常多参数联合估计的多维非线性搜索及迭代运算;由于采用改进的空间平滑算法,所以该算法具有很好的统计估计性能。计算机仿真结果验证了该算法的正确性和有效性。 Aiming at the problem of direction of arrival(DOA) estimation of coherent signal sources under the condition of array mutual coupling,this paper presents a kind of DOA estimation algorithm of signal sources based on the improved spatial smoothing algorithm by using the strip circulation characteristic and symmetrical Toeplitz characteristic of the mutual coupling matrix of uniform line array.The proposed algorithm need not know the information of coupling parameters of array elements but one-dimensional spectrum peak search,which avoids the multi-dimensional nonlinear search and iterative operation of the common multi-parameter joint estimation.Because of using the improved spatial smoothing algorithm,the algorithm has perfect statistical estimation performance.The correctness and effectiveness of the proposed algorithm are verified through the computer simulation results.
机构地区 空军工程大学
出处 《舰船电子对抗》 2010年第6期109-113,共5页 Shipboard Electronic Countermeasure
关键词 DOA估计 阵列互耦 相干信源 改进的空间平滑算法 direction of arrival estimation array mutual coupling coherent signals improved spatial smoothing algorithm
  • 相关文献

参考文献7

  • 1Hamza R,Buckley K.An analysis of weighted eigenspace methods in the presence of sensor errors[J].IEEE Transactions on Signal Processing,1995,43(5):1140-1150.
  • 2苏卫民,顾红,倪晋麟,刘国岁,张光义.通道幅相误差条件下MUSIC空域谱的统计性能[J].电子学报,2000,28(6):105-107. 被引量:27
  • 3Zhongfu Ye,Chao Liu.On the resiliency of MUSIC direction finding against antenna sensor coupling[J].IEEE Transactions on Antennas and Propagation,2008,56(2):371-380.
  • 4王布宏,王永良,陈辉.多径条件下基于加权空间平滑的阵元幅相误差校正[J].通信学报,2004,25(5):166-174. 被引量:17
  • 5Leshem A,Wax M.Array calibration in the presence of multipath[J].IEEE Transactions on Signal Processing,2000,48(1):53-59.
  • 6Varadarajan V,Krolik J L.Multichannel system Identification methods for sensor array calibration in uncertain multipath environments[A].Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing[C].NC:USA,2001.
  • 7董玫,张守宏,吴向东,张焕颖.一种改进的空间平滑算法[J].电子与信息学报,2008,30(4):859-862. 被引量:33

二级参考文献27

  • 1[1] R.O.Schmidt,A signal subspace approtach to multiple emitter location,Ph.D.dissertation,Stanford Univ.,Stanford,CA,1980
  • 2[2] R.Kumaresan and D.W.Tufts.Estimating the angle of arrival of multiple plane waves.IEEE Trans.Aerospace Electron.Syst.,Jan.1983,AES-19:134~139
  • 3[3] A.L.Swindlehurst and T.Kailaith.A performance analysis of subspace based methods in the presence of model errors,Part I:The MUSIC algorithm.IEEE Trans.On TASSP,1992,40(6):1758~1774
  • 4[4] Henry Cox,Robert M.Zeskind,and Mark M.Owen.Effects of Amplitude and Phase Errors on Linear Predicative Array Processors.IEEE Trans on TASSP,1988,36(1):10~19
  • 5[5] B.Friedlander.A Sensitivity Analysis of the MUSIC Algorithm.IEEE Trans on TASSP 1990,38(10):1740~1751
  • 6[6] J.H.Winkinson,The Algebraic Eigenvalue Problem.New York:Oxford University Press,1965
  • 7FISTASN, MANIKAS A. A new general global array calibration method[A]. Proc ICASSP[C]. Adelaide, Australia, 1994.73-76.
  • 8WEISS A J, FRIEDLANDER B. Self-calibration for high-resolution array processing[A]. Advances in Spectrum and Array Processing[C]. NJ: Prentice-Hall, 1991.
  • 9FRIEDLANDER B, WEISS A J. Direction finding in the presence of mutual coupling [J]. IEEE Trans AP, 1991, 39(3): 273-284.
  • 10FLANAGAN B P, BELL K L. Improved array self-calibration with large sensor position errors for closed space sources[A]. Proc 2000 Sensor Array and Multichannel workshop[C]. Cambridge, MA, 2000. 484-488.

共引文献72

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部