期刊文献+

正则参数求解的微分进化算法 被引量:1

Solving Regularization Parameters Based on Differential Evolution Algorithm
下载PDF
导出
摘要 研究了正则化方法中正则参数的求解问题,提出了利用微分进化算法获取正则参数.微分进化算法属于全局最优化算法,具有鲁棒性强、收敛速度快、计算精度高的优点.把正则参数的求解问题转化为非线性优化问题,通过保持在解空间不同区域中各个点的搜索,以最大的概率找到问题的全局最优解,同时还利用数值模拟将此方法与广义交叉原理、L-曲线准则、逆最优准则等进行了对比,数值模拟结果表明该方法具有一定的可行性和有效性. In this paper,we research the problem of solving regularization parameter in the regularization method and put forward a method for solving regularization parameters which is using differential evolution algorithm.The differential evolution algorithm is one kind of global optimization method with strong robustness,rapid convergence and higher accuracy.The problem of solving regularization parameter is translated into nonlinear optimal problem.Each point in different region of solution space is researched. The global optimal solution is found with the greatest probability.Then we compare the method with generalized cross-validation criterion,L-curve method and inverse optimality method through numerical simulation.The results of numerical simulation indicate that this method is feasible and effective.
出处 《应用数学与计算数学学报》 2010年第2期23-30,共8页 Communication on Applied Mathematics and Computation
基金 陕西省教育厅基金项目(08JK388)
关键词 不适定 正则化 正则参数 微分进化 ill-posed regularization regularization parameter differential evolution
  • 相关文献

参考文献6

  • 1Morozov. Methods for solving ill posed problems[M]. New York: Springer-Verlag, 1984.
  • 2Freeman R A , Kokotovic P V. Inverse optimality in robust stabilization[J]. SIAM Journal on Control and Optimization, 1996, 34(4):1365-1391.
  • 3Mark A.Lukas. Asymptotic optimality of generalized cross-validation for choosing the regular- ization parameter[M]. Numerische Mathematik. 1993.
  • 4D.Calvetti.Tikhonov regularization and the L-curve for large discrete ill-posed problems[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 423-446.
  • 5Kenneth V.Price, Rainer M.Storn, Jouni Alampinen. Differential Evolution: A Practical Approach to Global Optimization [M]. New York: Springer, 2004, 135139.
  • 6Groetsch C W. The Theory of Tikhonov of Regularization for Fredholrn Equation of the First Kind IM]. Boston: Pitman. 1984.

同被引文献21

  • 1Daniel PB, Pierluigi C. Introduction to the theory of complexity. Prentice Hall. ISBN 0-13-915380-2,1994.
  • 2Zou H, Hastie T. Regularizafion and variable selection via the elastic net. J. R. Statist. Soc. B ,2005,67:301-320.
  • 3Hoed A, Kennar R. Ridge regression. In Encyclopedia of Statistical Sciences, 1998,8 : 129-136.
  • 4Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 1996,58:267-288.
  • 5Efron B, Hastie T, Johnstone I, et al. Least angle regression. Ann. Statist. ,2004,32:407-499.
  • 6Zou H. The adaptive lasso and its oracle properties. Journal of the A- merican Statistical Association ,2006,101 : 1418-1429.
  • 7Li ZT, Mikko J, Sillanpaa. Overview of lasso-related penalized re- gression methods for quantitative trait mapping and genomic selec- tion. Theor Appl Genet,2012,125:419-435.
  • 8Scheetz T, Kim K, et al. Regulation of gene expression in the mam- malian eye and its revevance to eye disease. Proc. Natl. Acad. Sci, 2006,103 : 14429-14434.
  • 9Patrick B, Jian H. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors. Stat Comput,2015,25 : 173-187.
  • 10Zou H, Hastie T. Regression shrinkage and selection via the elastic net, with application to microarrays,2003 ,1-26.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部