期刊文献+

分数阶复杂网络的同步分析

Synchronization Analysis of Fractional Complex Networks
下载PDF
导出
摘要 本文主要研究了节点动力学为Caputo型的分数阶微分方程的复杂网络的同步,建立了判定分数阶网络的同步定理.数值例子验证了理论结果的有效性. In this paper we mainly study synchronization of complex network with fractional dynamical nodes,where the fractional derivative denotes the Caputo derivative. The theoretical criterion of synchronization inside a fractional complex network is established.Numerical examples are in line with the theoretical analysis.
机构地区 上海大学数学系
出处 《应用数学与计算数学学报》 2010年第2期101-106,共6页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(No.10872119)
关键词 CAPUTO导数 复杂网络 同步 Caputo derivative complex network synchronization
  • 相关文献

参考文献1

二级参考文献11

  • 1Watts D.J. and Strogatz S.H. Collective dynamical of small-world networks[J]. Nature, 1998, 393: 440-442.
  • 2Barabasi A.L. and Albert R. Emerging of scaling in random networks[J]. Science, 1999, 286: 509-512.
  • 3Chen Q.H. and Shi D.H. Markov chains theory for scale-free networks[J]. Phys. A, 2006, 361: 121-133.
  • 4Vlirollo R.E. and Strogatz S.H. Synchronization of pulse-coupled biological oscillators[J]. SIAM J Applied Math., 1990, 50: 1645-1662.
  • 5Neda Z., Ravasz E., Brechet Y., et.al. The sound of many hands clapping[J]. Nature, 2000, 403: 849-850.
  • 6Mohanty P. Nano-oscillators get it together[J]. Nature, 2005, 437: 325-326.
  • 7Li C.P., Sun W.G. and Kurths J. Synchronization of complex dynamical networks with time delays[J]. Phys. A, 2006, 361: 24-34.
  • 8Li K.Z., Small M. and Fu X.C. Contraction stability and transverse stability of synchronization in complex networks[J]. Phys. Rev. E, 2007, 76: 056213.
  • 9Li C.P., Sun W.G. and Kurths J. Synchronization btween two coupled complex networks[J]. Phys. Rev. E, 2007, 76: 046204.
  • 10Li C.P., Xu C.X., Sun W.G., et.al. Outer synchronization of coupled discrete-time networks[J]. Chaos, 2009, 19: 013106.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部