期刊文献+

自相似集迭代函数系统的分离性 被引量:1

The Separation Properties for Iterated Function Systems of Self-Similar Sets
下载PDF
导出
摘要 研究了d-维欧氏空间上的自相似集迭代函数系统的分离性,并且得到了一个由该系统所生成的不变集的Hausdorff维数等于其自相似维数的必要条件. The separation properties of iterated function systems of self-similar set in d-dimensional Euclidean space are studied.And the necessary condition that the invariant sets Hausdorff dimension produced by the systems is equal to self-similar dimension is proved.
作者 刘爱萍
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2010年第6期594-596,共3页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 HAUSDORFF维数 自相似维数 不变集 Hassdorff dimension self-similar dimension invariant sets
  • 相关文献

参考文献10

  • 1Hutchison J.Fractals and self-similarity[J].Indian Univ Math J,1981,30:713-747.
  • 2法尔科内.分形几何:数学基础与应用[M].曾文曲,王向阳,陆夷,等,译.沈阳:东北大学出版社,2001.
  • 3黄大富.分形集与分数维[J].江西师范大学学报(自然科学版),1994,18(1):54-61. 被引量:1
  • 4Moran P A P.Additive functions of intervals and Hausdorff measure[J].Proc Cambridge Philos Soc,1946,42(1):15-23.
  • 5Falconer K J.Fractal geometry mathematical foundations and applications[M].New York:John Wiley & Sons,1990.
  • 6Bandt C,Hung N V,Rao Hui.On the open set condition for self-similar fractals[J].Proc Amer Math Soc,2006,134(5):1369-1374.
  • 7Schief A.Separation properties for self-similar sets[J].Pro Amer Math Soc,1994,122(1):111-115.
  • 8Bandt C,Rao Hui.Topology and separation of self-similar fractals in the plane[J].Nonlinearity,2007,20(6):1463-1474.
  • 9Ye Yuan-ling.Multifractal of self-conformal measures[J].Nonlinearity,2005,18(5):2111-2133.
  • 10许绍元,周作领.关于满足强分离开集条件的自相似集的Hausdorff测度[J].数学进展,2005,34(5):545-552. 被引量:18

二级参考文献7

共引文献17

同被引文献11

  • 1Takagi T. A simple example of the continuous function without derivative [ J ]. Phys Math Soc Japan Ser II, 1903 ( 1 ) : 176-177.
  • 2Kaplan J L, Mallet-Paret J, Yorke J A. The Lyapunov di- mension of a nowhere differentiable attracting torus [ J ]. Ergod Th Dynam Sys,1984,4(2) :261-281.
  • 3Delange H. Sur la fonction sommatoir de la fonction "som- me des chiffres" [J]. Enseign Math,1975,21(2) :31-47.
  • 4Buczolich Z. Irregular 1-sets on the graphs of continuous functions [ J ]. Acta Math Hungar, 2008, 121 (4) 371- 393.
  • 5t lata M, Yamaguti M. The Takagi function and its generali-zation [ J ]. Japan J Appl Math, 1984,1 ( 1 ) : 183-199.
  • 6Trollope J R. An explicit 'expression for binary digital sums [J]. Math Mag, 1968,41 ( 1 ) :21-25.
  • 7Mirsky L. A theorem on representation of integers in the scale of r [ J ]. Scripta Math, 1949,15 ( 1 ) : 11-12.
  • 8Baba Y. On maxima of Takagi-van der Waerden functions [J]. Proc Amer Math Soc,1984,91 (3) :373-376.
  • 9Knuth D E. The art of computer programming, volume 4, fascicle 3: generating all combinations and partitions [ M ]. Upper Saddle River, New Jersey : Addison-Wesley, 2005.
  • 10Jeffrey C L, Maddoek Z. Level sets of the Takagi function : local level sets [ J ]. Monatshefte fur Mathematik, 2012, 166(2) :201-238.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部