期刊文献+

基于观测站机动的机载单站无源定位跟踪研究 被引量:7

Research on Airborne SOPLAT Based on Maneuvering Observer
下载PDF
导出
摘要 运动单站对运动辐射源在利用相位差变化率进行跟踪时,需要满足更严格的可观测性要求,只有当观测站载机比目标具有至少高一次的已知机动运动才可能实现可观测性。针对目标匀速直线运动的情况,提出观测器加减速直线和匀速圆周两种机动运动方式,并通过非线性滤波算法对目标定位跟踪。给出了两种观测器机动情况下EKF和UKF的滤波结果,计算机仿真表明,两种情况都可以对目标进行定位跟踪,且与EKF算法相比较,UKF算法实现简单,在运算量不增加的同时有更好的定位与跟踪性能。 In order to locate and track the moving target by moving observer based on the phase of change,there need stricter observability demand.The moving target can be located and tracked when the observer is more maneuverable than the target.Accelerating velocity linear motion and uniform circular motion of the observer are proposed for the target's CV motion.The non-linear filtering results,EKF and UKF,are given in the two situations.Simulation results show that the CV target can be located and tracked in the two situations,and the UKF algorithm has higher precision and faster convergence without additional computing expenses.
出处 《雷达科学与技术》 2010年第6期499-502,515,共5页 Radar Science and Technology
关键词 无源定位 观测器机动 相位差变化率 扩展卡尔曼滤波 不敏卡尔曼滤波 passive location observer maneuvering phase rate of change extended Kalman filter(EKF) unscented Kalman filter(UKF)
  • 相关文献

参考文献5

  • 1Vaccaro D D. Electronic Warfare Receiving Systems[M]. Norwood:Artech House, 1993.
  • 2孙仲康,郭福成,冯道旺.单站无源定位跟踪技术[M].北京:国防工业出版社,2009.
  • 3万莉,刘焰春,皮亦鸣.EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术,2007,5(1):13-16. 被引量:40
  • 4Julier S J, Uhhnann J K. Unscented Filtering and Nonlinear Estimation[J]. Proc of The IEEE, 2004, 92(3) :401-422.
  • 5Julier S J, Uhlmann J K, Durrant-Whyte H F. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J].IEEE Trans on Automatic Control,2000,45(3):477- 482.

二级参考文献5

  • 1Gordon NJ,Sal mond DJ,and Smith A F M.A No-vel Approach to Nonlinear/Non-Gaussian Bayesian State Esti mation[].IEE Proceedings.1993
  • 2Arulampalam MS,Maskell S,Gordon N.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[].IEEE Trans on Signal Process-ing.2002
  • 3Kal man R E.A New Approachto Linear Filtering and Prediction Problems[].Trans ASMEJournal of Basic Engineering.1960
  • 4Hastings WK.Monte Carlo Sampling Methods Using Markov Chains and Their Applications[].Biometrika.1970
  • 5Crisan D,and Doucet A.A Survey of Convergence Results on Particle Filtering Methods for Practitioners[].IEEE Transactions on Signal Processing.2002

共引文献39

同被引文献31

  • 1李炳荣,曲长文,苏峰.机载单站无源定位技术分析[J].战术导弹技术,2005(6):35-39. 被引量:11
  • 2周瑞岩,伍光新,邓维波.伪线性滤波算法在三维测向无源定位中的应用[J].雷达与对抗,2006(3):8-10. 被引量:3
  • 3王本才,张国毅,侯慧群.无源定位技术研究[J].舰船电子对抗,2006,29(6):20-26. 被引量:31
  • 4B. Ristic, M. S. Arulampalam. Tracking a manoeuvring targetusing angle-only measurements: algorithms and performance [J]. Signal processing, 2003,83 (3) : 1223-1238.
  • 5Xiu Jianjuan, He You, Wang Guohong. Constellation of Mul- tisensors in Bearing-only Location System[J]. IEE Proceedings on Radar, Sonar and Navigation, 2005, 152(3):215-218.
  • 6H. Khaloozadeh, A. Karsaz. Modified Input Estimation Tech- nique for Tracking Manoeuvring Targets [ J]. IF Proceedings on Radar, Sonar and Navigation, 2009, 3(1):30-41.
  • 7Blackman S. Design and Analysis of ModemTracking Systems [ M ]. Norwood,MA : ArtechHouse, 1999.
  • 8Farina A, Del Gaudio M G, etc. Detection andtracking of ballistic target [ C ] //2004 IEEE RadarConference, Philadelphia, USA, 2004 : 450-456.
  • 9BLACKMAN S. Design and Analysis of ModernTracking Systems [ M ]. Norwood, MA: ArtechHouse, 1999.
  • 10FARINA A,DEL GAUDIO M G,D’ELIA U,et al.Detection and Tracking of Ballistic Target[C] // 2004IEEE Radar Conference, Philadelphia, USA: IEEE,2004:450-456.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部