期刊文献+

多特征-谱聚类的SAR图像溢油分割 被引量:3

SAR oil spill image segmentation based on a multi-spectral clustering algorithm
下载PDF
导出
摘要 经典的K聚类算法,并不适合实现任意形状的聚类,而且有容易陷入局部最小值的不足.提出基于多个纹理特征的谱聚类算法,该方法用灰度共生矩阵(GLCM)提取合成孔径雷达(SAR)图像的多个特征值,构建谱聚类的特征矩阵,并依据规范切准则,用K均值聚类的方法对拉普拉斯矩阵的第二小的特征值对应的特征向量进行聚类,实现基于SAR图像的溢油的分割.新方法与传统的K聚类方法比较,可以减少相干斑噪声对分割结果的影响,较好的保持图像边缘.仿真结果显示,该算法对于相干斑噪声影响较大的图像具有较强的鲁棒性. The classic K-mean clustering algorithm is not suitable for the circumstances of arbitrary shapes and is prone to use the local minimum.In order to fix these shortcomings,a spectral clustering algorithm based on multi-texture characteristics was proposed.The algorithm first used gray-level co-occurrence matrices(GLCM) to extract three features of the synthetic aperture radar(SAR) image and construct a characteristic matrix of spectral clustering.Next using the N-cut(Normalized-cut) criterion,it clustered the eigenvector corresponding to the second small eigenvalue of the Laplacian matrix in order to carry out the SAR oil spill image segmentation.Compared with the classic K-mean algorithm,the proposed method reduces the influence of coherent scattering noise on the segmentation result and efficiently conserves the edge of the image.The simulation results also show that the new method has a strong robustness for an image badly affected by the coherent scattering.
出处 《智能系统学报》 2010年第6期551-555,共5页 CAAI Transactions on Intelligent Systems
基金 上海市教育委员会科研创新资助项目(08Y2110)
关键词 合成孔径雷达 灰度共生矩阵 谱聚类 溢油分割 synthetic aperture radar gray-level co-occurrence matrices spectral clustering spill oil segmentation
  • 相关文献

参考文献15

  • 1ARDHUIN F G,MERCIER G,GARELLO R.Oil slick detection by SAR imagery:potential and limitation.Digital Object Identifier 10.1109/OCEANS.2003.178539:164-169.
  • 2FUMIAKI T,TSUJI S.Computer analysis of visual textures[M].Boston:Kluwer Academic Publishers,1990:3-10.
  • 3HARALICK M.Statistical and structural approaches to texture[C]//Proceedings of the IEEE,1979,67(5):786-804.
  • 4郭巍,张平,朱良,陈曦.基于AdaBoost.ECOC的合成孔径雷达图像目标识别研究[J].哈尔滨工程大学学报,2010,21(2):232-236. 被引量:5
  • 5ZHANG Fengli,SHAO Yun,TIAN Wei,et al.Oil spill identification based on textural information of SAR Image[C]//Proc of the IEEE International Geoscience and Remote Sensing Symposium.Boston,USA,2008:1308-1311.
  • 6马秀丽,焦李成.基于分水岭-谱聚类的SAR图像分割[J].红外与毫米波学报,2008,27(6):452-456. 被引量:25
  • 7焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
  • 8BACH F R,JORDAN M I.Blind one microphone speech separation:a spectral learning approach[C]//Proc of Nineteenth Annual Conference Neural Information Processing Systems(NIPS).Vancouver,Canada,2005:17.
  • 9MALIK J,BELONGIE S,LEUNG T,et al.Contout and texture analysis for image segmentation[J].International Journal of Computer Vision,2001,43(1):7-27.
  • 10FIEDLER M.Algebraic connectivity of graphs[J].Czechoslovak Mathematical Journal,1973,23:298-305.

二级参考文献13

  • 1孙伟,夏良正.一种基于形态学的红外目标分割方法[J].红外与毫米波学报,2004,23(3):233-236. 被引量:21
  • 2陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 3VLADIMIR N. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 2000,157-183.
  • 4OLIVER C, QUEGAN S. Understanding synthetic aperture radar images [ M ] London : Artech House Inc, 1998:296-315.
  • 5SUN Y, LIU Z, TODOROVIC S, et al. Adaptive boosting for SAR automatic target recognition [ J ], IEEE Transaction on Aerospace and Electronic Systems ,2007,43 ( 1 ) : 112-125.
  • 6FREUND Y,SCHAPIRE R. A decision-theoretic generalization of on line learning and an application to boosting [ J ]. Journal of Computer and System Sciences, 1997,55 : 119- 139.
  • 7KUNCHEVA L. Using diversity measures for generating error-correcting output codes in classifier ensembles [ J ]. Pattern Recognition Letters ,2005,26:83-90.
  • 8LING S, XING C. Coding theory [ M ]. Cambridge: Cambridge University Press ,2004:96-99.
  • 9SANDIRASEGARAM N, ENGHSTH R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Sp metric distances, MLP NN, and HNeT) algorithms for SAR imagery[J]. Proc SPIE,2005 ,5808 :314-325.
  • 10MALLAT S. A wavelet tour of signal processing[ M]. NewYork : Academic Press, 1998:221-303.

共引文献56

同被引文献41

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部