期刊文献+

双曲型守恒律方程的两种高精度方法的比较研究

Comparative Study of WENO Methods and Discontinuous Galerkin Methods of Hyperbolic Conservation Laws Equations
下载PDF
导出
摘要 详细地讨论求解双曲型守恒律方程的两种高精度数值方法,即WENO方法和间断Galerkin方法,并就一些典型问题进行数值比较实验,通过在精度、计算速度和对奇异的分辨率等方面的比较,对这两个方法有了一个较详细的了解,得到了一些有用的结论. In this paper,we discuss two kinds of high-precision numerical methods of solving hyperbolic conservation laws equations in detail,namely,WENO methods and discontinuous Galerkin methods. Through the numerical comparative tests of some typical problems,and the comparison in accuracy, computing speed and the resolution of such exotic,we understand these two methods better and obtain some useful conclusions.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2010年第4期19-23,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(10971226 11001270)
关键词 WENO方法 间断GALERKIN方法 高精度方法 WENO methods discontinuous Galerkin methods high-precision methods
  • 相关文献

参考文献7

  • 1TITAREV V A,TORO E F.Finite-volume WENO schemes for 3-D conservation laws[J].J Comput Phys,2004,201:238-260.
  • 2QIU J X,SHU C W.Runge-Kutta Discontinuous Galerkin Method using WENO Limiters[J].SIAM J Sci Comput,2005,26(3):907-929.
  • 3COCKBIRN B,LIN S Y,SHU C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws Ⅱ:General framework[J].Math Comp,1989,52:411-435.
  • 4BURBEAU A,SAGAUT P,BRUNEAU C H.A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods[J].J Comput Phys,2001,169:111-150.
  • 5SHU C W,OSHER S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comput Phys,1988,77:439-471.
  • 6LIU X D,OSHER S,CHAN T,Weighted essentially non-oscillatory schemes[J].J Comput Phys,1994,115:200-212.
  • 7JIANG G,SHU C W.Efficient implementation of weighted ENO schemes[J].J Comput Phys,1996,126:202-228.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部