期刊文献+

文化符号的数学思维 被引量:2

Mathematical Thinking on a Semiotic of Culture
下载PDF
导出
摘要 本文从科学的视角研究探讨数学及其对称原理和理论,并应用数学作为方法论,研究中西方传统文化和艺术中所蕴含的数学观。人们在创造和使用一切文化世界的符号过程中,时常蕴藏着人类智慧的另一个重要内容,即数学。我们将其称之为"文化符号的数学思维",即文化符号在构筑过程中同时所蕴含着某种数学原理、理论及思想。探讨艺术如何遵循数学"法则"进行创作活动,其动机不在于数学本身,而在于唤醒人们重视科学对艺术的影响作用。研究数学与文化的另一主要目的是,希望人们能从全方位的和文化的视角欣赏数学的全貌和魅力,同时阐明一个基本观点:数学不仅仅是一种抽象的思想,同时也在艺术的创作方法和工具中具备重要价值。 This paper contributes further analysis to a growing body of literature that uses mathematics to enhance interpretation of a culture from styles of its artifacts. The mathematics employed is the classification and analysis of original designs and relative principles of geometrical symmetry. This work has focused primarily on the topic of "relationship between a semiotic of culture and mathematics". To study these original designs or different culture from a mathematics point of view and to analyze a repeating design to see what makes it "work," and to create original designs using the power of the mathematical "lows" which govern these designs is a strong non-mathematical motive for studying these mathematical theory. Obviously, both its cultural and mathematical connotation are inseparable and I wish people would realize and notice that mathematics is an important part of culture and history.
作者 林迅
出处 《同济大学学报(社会科学版)》 CSSCI 北大核心 2010年第6期61-69,共9页 Journal of Tongji University:Social Science Edition
关键词 文化符号 数学思维 对称 a semiotic of culture mathematical thinking symmetry
  • 相关文献

参考文献10

  • 1[美]R·柯朗,H·罗宾.什么是数学[M].左平,张饴慈译.上海:复旦大学出版社,2007.
  • 2Woods,H.J..The Geometrical Basis of Pattern Design[J].Journal of the Textile Institute,Transactions,1935,26,T293.
  • 3Meyer,F.S..A Handbook of ornament[M].London:Omega,1987,Introduction.
  • 4Meyer,F.S.A Handbook of Ornament[M].London:Omega,1987,chp.3.
  • 5Stephenson,C.,Suddards,F.A Textbook Dealing with Ornamental Design for Woven Fabrics[M].London:Methuen,1897,chps.2-6.
  • 6Day,L.F.Pattern Design[M].London:Batsford,1903,chps.2-6.
  • 7Christie,A.H.Patterns Design.An Introduction to the Study of Formal Ornament[M].New York:Dover,1969,chp.9.
  • 8Hann,M.A.,Thomson,G.M.The Geometry of Regular Repeating Patterns[J].Textile Progress,vol.22,no.l,1992,chp2.
  • 9Shubnikov,A.V.,Koptsik,V.A..Symmetry in Science and Art[M].Plenum Press,New York,1974.
  • 10Coxeter,H.S.M..Introduction to Geometry[M].New York:Wiley,1961,chp.3.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部