期刊文献+

参数不确定时滞系统分数阶PI~λD~μ控制器稳定域算法 被引量:2

Algorithm for stability region of parameter uncertain system with time delay using fractional-order PI~λD~μ controller
下载PDF
导出
摘要 对分数阶PIλDμ控制器提出了求解参数不确定时滞系统稳定域的方法。通过Kharitonov理论将参数不确定时滞系统分解为若干参数确定的子系统,根据D分解方法分别求出使各个子系统获得最大稳定域时的PIλD和PIDμ控制器的参数λ和μ,获得了PIλDμ控制器的参数。以这个PIλDμ控制器去计算各个子系统的稳定域,各子系统稳定域的交集即为参数不确定时滞系统的稳定域。采用参数不确定时滞系统对此算法进行了验证,表明本算法在计算分数阶PIλDμ控制器的稳定域上是可行有效的。 This paper presents a new algorithm for solving the stability region of a parameter uncertain system with time delay using PIλDμ controller.Firstly,Kharitonov theorem is used to decompose the parameter uncertain system into several subsystems.Secondly,D-decomposition method is applied to solve the biggest stability region of each subsystem.The values of λ and μ of PIλD and PIDμ controllers corresponding to the biggest stability regions are obtained.A new PIλDμ controller is constructed using the obtained values of λ and μ.Thirdly,the stability regions of the subsystems are calculated using the new PIλDμ controller.Finally,the intersection of the stability regions of the subsystems is the stability region of the parameter uncertain system with time delay.The algorithm was verified by a parameter uncertain integer order plant with time delay and result indicates that the algorithm is feasible and effective in calculating the stability region of fractional order PIλDμ controller for parameter uncertain system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第12期2718-2723,共6页 Chinese Journal of Scientific Instrument
基金 国家863计划(2006AA04Z402)资助项目
关键词 参数不确定 Kharitonov理论 PIλDμ控制器 稳定域 parameter uncertainty Kharitonov theorem PIλDμ controller stability region
  • 相关文献

参考文献15

  • 1DORCAK L.Numerical for simulation the fractional-order control system[M].UEF SAV,The Academy of Science Institute of Experimental Physics,Kosice,Slovak Republic,1994.
  • 2OUSTALOUP A.La dèrivation non entière[M].Paris:Hermes,1995.
  • 3PODLUBNY I.Fractional-order system and PIλDμ controller[J].IEEE Transactions on Automatic Control,1999,44(1):208-214.
  • 4PODLUBNY I,DORCAK L,KOSTIAL I.On fractional derivates,fractional order dynamic systems and PIλDμcontrollers[C].Proceeding of the 36th Conference on Decision & Control.San Diego,California,USA,1997:4985-4990.
  • 5罗慧,王友仁,崔江.基于最优分数阶傅里叶变换的模拟电路故障特征提取新方法[J].仪器仪表学报,2009,30(5):997-1001. 被引量:26
  • 6徐宝松,涂亚庆,刘良兵.一种基于微元法和分数阶傅里叶变换的VCO非线性度检测方法[J].电子测量与仪器学报,2008,22(5):117-122. 被引量:10
  • 7MAIONE G,LINO P.New tuning rules for fractional order PIλcontrollers[J].Nonlinear Dynamics,2007,49:251-257.
  • 8FELIU-BATLLE V,RIVAS PREZ R.Fractional robust control of main irrigation canals with variable dynamic parameters[J].Control Engineering Practice,2007,15:673-686.
  • 9HAMAMIC S E.An algorithm for stabilization of fractional-order time delay systems using fractional order PID controllers[J].IEEE Transactions on Automatic Control,2007,52 (10):1964-1969.
  • 10BUSLOWICZ M.Stability of linear continuous time fractional order systems with delays of the retarded type[J].Bulletin of the Polish Academy of Sciences Technical Sciences,2008,56 (4):319-324.

二级参考文献23

共引文献41

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部