期刊文献+

基于小生境遗传算法的多目标药物提取条件优化分析应用 被引量:4

Multi-objective Optimize Based on Niche Pareto Genetic Algorithms—Uniform Multi-Objective Optimization of Extraction Conditions of Drug Application
下载PDF
导出
摘要 目的研究小生境遗传算法在均匀试验设计多目标药物提取条件优化中的应用。方法对微萃取五味子的均匀试验数据建立以浸膏得率、五味子醇甲、五味子总木脂素的子目标模型,采用遗传算法分别对其进行单目标优化,NPGA对其进行多目标优化,搜索最优提取条件,比较搜索结果;利用课题组成员英国Glasgow大学软件工程师陈益编写的Matlab2009a外挂SGALAB工具箱beta5008完成遗传算法寻优。结果单目标遗传算法优化可以得到各目标最大时的最优提取条件,NPGA进行三目标优化时,对各子目标进行了折衷处理使各子目标尽可能获得最大的解,在主要目标上达到了单目标最大函数值的76%以上,确定的最优提取条件的效果高于均匀试验中的任何一个方案。结论 NPGA搜索的Pareto非劣解是合理的,达到了较好的效果,为均匀试验设计最优条件选择提供了合理的方法,可推广到正交试验设计、析因试验设计的最优条件选择。 Objective:Study the application of multi-objective optimization analysis of Niched Pareto Genetic Algorithm in drug extraction.Methods:Using micro-extraction schisandra data in uniform design establish three-objective function.Applying simple genetic algorithm and NPGA explore the optimal extracting conditions.Compare their optimal extracting conditions.Using SGALAB beta5008 of the Matlab2009a plug-in tool-box,which was written by Chen Yi in the United Kingdom University of Glasgow,achieves the genetic algorithm optimization.Results:Single-objective genetic algorithm optimization can obtain the optimal extraction conditions of each objective.NPGA for three-objective optimization,balance all the sub-objectives to obtain the greatest solution,which can achieve 76% of the maximum value of single objective function in the main goals,thus we can get optimal extraction conditions,the effect of which is best.Conclusion:NPGA provides reasonable pareto optimal solutions.,It is a reasonable method for selecting optimal conditions for Uniform Experimental Design.This method can be extended to the selection of the optimal conditions in the orthogonal experimental design and factorial design.
出处 《中国卫生统计》 CSCD 北大核心 2010年第6期577-581,共5页 Chinese Journal of Health Statistics
基金 国家自然科学基金项目(30872183) 山西省自然科学基金项目(2007011087) 山西医科大学科技创新基金项目(01200715)
关键词 小生境遗传算法 均匀试验 多目标优化 Pareto非劣解 最优提取条件 Niched pareto genetic algorithm Uniform design Multi-objective optimization Pareto non-inferior solution Optimal extraction condition
  • 相关文献

参考文献6

  • 1王小平,曹立明著.遗传算法-理论、应用及软件实现.西安:西安交通大学出版社,2001.
  • 2Schaffer J.Multiple objective optimization with vector evaluated genetic algorithms,in Grefensteue[266],pp.93-100.
  • 3崔逊学,方廷健.多目标进化算法的研究[J].中国科学基金,2002,16(1):17-19. 被引量:8
  • 4Fonseca CM, Fleming PJ. Genetic algorithms for multi-objective optimization:formulation and generalization. In:Proceedings of the fifth international conference on genetic algorithms, 1993:416-423.
  • 5Hom J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algonthm for multi-objective optimization.IEEE Wodd Congress on Computational Computation,Piscataway,NJ,1994.
  • 6黄天辉,沈平孃.均匀设计优选微波萃取五味子的工艺研究[J].中成药,2006,28(8):1111-1113. 被引量:21

二级参考文献20

  • 1汤臣康.五味子的化学和药理研究的新进展[J].西北药学杂志,1994,9(6):278-282. 被引量:32
  • 2Coello C A C. List of reference on evolutionary multiobjective optimization. http://www lania. mx/ccoello/EMOO/EMOObib. html.
  • 3Hwang C L, Masud A S M. Multiple Objective Decision Making-methods and Application. Berlin: Springer verlag, 1979.
  • 4Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale. 1985,93-100.
  • 5http ://www. tik. ee. ethz. ch/emo/
  • 6Van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithms: aAnalyzing the state-of-the-Art. IEEE Transactions on Evolutionary Computation. 2000, 8(2):125-147.
  • 7Hajela P, Lin C Y. Genetic search strategies in multi-chterion optional design. Structural Optimization, 1992,4:99-107.
  • 8Fonseca C M, Fleming P J. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms. 1993: 416-423.
  • 9Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE W orld Congress on Computational Computation, Piscataway, NJ. 1994, 1:82-87.
  • 10Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4) :257-271.

共引文献26

同被引文献33

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部