期刊文献+

土压平衡盾构改性砂土离散元模型参数反演方法研究 被引量:8

Inversion on discrete element model parameters of conditioned soil of earth pressure balance shield machine
下载PDF
导出
摘要 首次将遗传神经网络与三轴试验离散元数值模拟有机结合,用于改性砂土颗粒离散元接触模型参数反演.反演目标是使三轴试验离散元模拟曲线与真实实验曲线误差最小,采用的求解策略是基于遗传神经网络的参数识别.三轴试验的离散元数值模拟为网络提供训练样本,遗传算法映射网络输入与输出样本之间的复杂非线性关系,改性土三轴试验的真实测量曲线为参数反演提供依据.以反演结果为接触模型参数的三轴试验离散元模拟曲线与真实实验曲线相吻合,为改性土离散元接触模型参数的确定提供了有效和准确的方法,为进一步的盾构密封舱压力分析奠定了基础. The inversion method combining the genetic neural network and the discrete element simulation of triaxial tests is firstly described for determining the contact model parameters of the conditioned soil.The purpose is to make the error of the simulation curves and the laboratory curves of the triaxial tests minimum.The approach to this solution is the parameters identification based on the genetic neural network.The network training sample is provided by the discrete element simulation and the complicated nonlinear relation between the input and the output samples is mapped by the genetic algorithm.The laboratory triaxial test curves are the basis for parameter identification. The simulation curves calculated with the inversed model parameters match the laboratory curves well,which illustrates that the presented inversion method of the discrete element parameters of the conditioned soil is feasible and correct.It provides the basis for the further pressure analysis of the closet of the shield machine.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第6期860-866,共7页 Journal of Dalian University of Technology
基金 "九七三"国家重点基础研究发展计划资助项目(2007CB714006)
关键词 盾构 改性土 离散元 神经网络 参数反演 三轴试验 shield machine conditioned soil discrete element neural network parameters inversion triaxial test
  • 相关文献

参考文献14

  • 1QUEBAUD S, SIBAI M, HENRY J P. Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils [J]. Tunnelling and Underground Space Technology, 1998, 13(2) : 173-180.
  • 2ASAF Z, RLIBINSTEIN D, SHMULEVICH I. Determination of discrete element model parameters required for soil tillage [J]. Soil and Tillage Research, 2007, 92(1-2) :227-242.
  • 3GIODA G, MAIER G. Direct search solution of an inverse problem in elastic-plasticity, identification of cohesion, friction angle and in-situ stress by pressure tunnel tests [J]. International Journal for Numerical Methods in Engineering, 1980, 15(12):1823-1834.
  • 4曹国金,苏超,姜弘道.一种三维优化位移反演分析法[J].岩土力学,2001,22(3):303-307. 被引量:3
  • 5LIANGY C, FENG D P, LIU G R, etal. Neural identification of rock parameters using fuzzy adaptive learning parameters [J]. Computers and Structures, 2003, 81 (24-25) : 2373-2382.
  • 6WASZCZYSZYN Z, ZIEMIANSKI L. Neural networks in mechanics of structures and materials- New results and prospects of applications [J]. Computers and Structures, 2001, 79 (22-25) : 2261- 2276.
  • 7WANG C, MA G W, ZHAO J, et al. Identification of dynamic rock properties using a genetic algorithm [J]. International Journal of Rock Mechanics and Mining Science, 2004, 41 (3) :453-553.
  • 8李守巨,刘迎曦,王登刚.基于模拟退火算法的含水层参数非线性反演[J].西安交通大学学报,2001,35(5):546-548. 被引量:8
  • 9ASAF Z, RUBINSTEIN D, SHMULEVICH I.Evaluation of link-track performances using DEM [J]. Journal of Terramechanies, 2006, 43 (2):141- 161.
  • 10MANUEL J M M, LUIS E M R. Discrete numerical model for analysis of earth pressure balance tunnel excavation [J ]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10) :1234-1242.

二级参考文献6

共引文献9

同被引文献57

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部