期刊文献+

T型管道冷热流体混合过程中速度波动大涡模拟 被引量:2

Large-eddy simulation of velocity fluctuation of hot and cold fluids mixing in a tee-junction
下载PDF
导出
摘要 T型管道中的冷热流体混合湍动效应,必将导致流体的速度波动,这是诱发管道热疲劳的流动本质原因.为了揭示这一原因,对T型管道中主管为热流体和支管为冷流体的混合过程进行了大涡模拟,对比分析了某一截面位置上的时均速度和均方根速度的实验值与模拟值.实验值与模拟值吻合良好,说明大涡模拟能够准确地预测混合过程的时均速度和速度波动.数值结果表明,x和z方向的时均速度和均方根速度沿z方向具有随着x/db的增大而趋于平稳、随y/db的增大而减小的总体趋势. The turbulence effect of hot and cold fluids mixing in the tee-junction led to fluctuations of velocity,which is the essential cause of fluid flow inducing thermal fatigue of pipe.In order to reveal the cause,fluids mixing for the case with hot fluid in main duct and cold fluid in branch duct of a teejunction was numerically simulated by large-eddy simulation.Numerical results of time-averaged and root-mean square velocities were compared with experimental results in a profile.The good agreement of numerical results with experimental ones indicates that large-eddy simulation can exactly predict the time-averaged velocity and velocity fluctuation of mixing process.Numerical results show that the profiles of time-averaged and root-mean square velocities in xand z directions along z direction have the trend of becoming uniform with the increase of x/dband decreasing with the increase of y/db.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第6期896-900,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50906002) 教育部高等学校博士学科点专项科研基金资助项目(20090010110006) 北京市科技新星计划资助项目(2008B16)
关键词 T型管道 混合过程 速度波动 大涡模拟 tee-junction mixing process velocity fluctuation large-eddy simulation
  • 相关文献

参考文献15

  • 1LEE H Y, KIM J B, YOO B. Green's function approach for crack propagation problem subjected to high cycle thermal fatigue loading [J]. International Journal of Pressure Vessels and Piping, 1999, 76(8):487-494.
  • 2JONES I S. Impulse response model of thermal striping for hollow cylindrical geometries [J]. Theoretical and Applied Fracture Mechanics, 2005, 43(1) :77-88.
  • 3YOUNG L J. Lifetime evaluation of cracked shaft sleeve of reactor coolant pump under thermal striping [J]. International Journal of Solids and Structures, 2001, 38(46-47) : 8345-8358.
  • 4MESHII T, SHIBATA K, WATANABE K. Simplified method to evaluate upper limit stress intensity factor range of an inner-surface circumferential crack under steady state thermal striping[J]. Nuclear Engineering and Design, 2006, 236(10) : 1081-1085.
  • 5LEJEAILA Y S, KASAHARA N. Thermal fatigue evaluation of cylinders and plates subjected to fluid temperature fluctuations[J]. International Journal of Fatigue, 2005, 27(7): 768-772.
  • 6LABBE O, MAGLARAS E, GARNIER F. Largeeddy simulation of a turbulent jet and wake vortex interaction [J]. Computers & Fluids, 2007, 36(4) : 772-785.
  • 7MAJANDER P, SIIKONEN T. Large-eddy simulation of a round jet in a cross-flow [J]. International Journal of Heat and Fluid Flow, 2006, 27(3): 402-415.
  • 8FAN Jing-yu,ZHANG Yan,WANG Dao-zeng.LARGE-EDDY SIMULATION OF THREE-DIMENSIONAL VORTICAL STRUCTURES FOR AN IMPINGING TRANSVERSE JET IN THE NEAR REGION[J].Journal of Hydrodynamics,2007,19(3):314-321. 被引量:8
  • 9POPOVAC M, HANJALIC K. Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream [J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1360-1378.
  • 10WANG Y, YUAN G, YOON Yong-kyu, etal. Large eddy simulation (LES) for synthetic jet thermal management [J]. International Journal of Heat and Mass Transfer, 2006, ;19 (13-14): 2173- 2179.

二级参考文献13

共引文献10

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部