期刊文献+

轴、孔接触面荷载分布研究 被引量:13

Study of loads distribution between shaft and hole body contact interface
下载PDF
导出
摘要 提出基于有限元法分析接触问题的方法,求解轴、孔半径相近且考虑接触宽度时接触面荷载分布,解决了赫兹弹性接触理论以及工程上常用的关于轴、孔接触面荷载分布方法的局限性.首先利用ANSYS建立轴、孔配合简化模型,采用有限元接触分析方法求解出接触面上荷载的分布形式;然后利用MATLAB拟合工具箱,使用三角函数、高斯函数拟合出荷载的空间分布方程;最后应用于确定大功率风力发电机增速器中大行星架、大行星轮轴接触面之间的荷载分布,验证了方法的优越性. A method on loads distribution between shaft and hole body is proposed based on FE contact analysis,and the problem is solved in Hertz contact theory and common method on loads distribution between shaft and hole body in engineering when their radii are close and contact interface′s width is taken into account.First of all,the most common FE model of shaft and hole body in engineering in ANSYS is established,and FE contact method is made full use of to simulate the loads distribution in contact interface.Then,the loads distribution function is given in space through triangle function and Gauss function in MATLAB curve fit tool box.In the end,the method is used in loads distribution on the shaft and hole body between the major planet frame and major planet gear shaft in large power wind energy generator accelerator system,and the results testify the superiority of the method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第6期912-916,共5页 Journal of Dalian University of Technology
基金 "八六三"国家高技术研究发展计划资助项目(2006AA04Z101)
关键词 赫兹弹性接触理论 荷载分布 有限元法 接触分析 Hertz elastic contact theory loads distribution FEM contact analysis
  • 相关文献

参考文献3

二级参考文献25

  • 1朱昌铭.基于虚功原理的弹性接触问题的线性互补方法[J].力学学报,1995,27(2):189-197. 被引量:16
  • 2陈万吉,陈国庆.接触问题的互补变分原理及非线性互补模型[J].计算结构力学及其应用,1996,13(2):138-146. 被引量:22
  • 3吕和祥,马莉颖.三维接触问题的拟二维序列解法[J].固体力学学报,1996,17(1):31-37. 被引量:7
  • 4钟万勰.弹性接触问题的变分原理及参数二次规划求解[J].计算结构力学及其应用,1985,(2):1-9.
  • 5[2]葛军.数学奥林匹克竞赛解题指导[M].2001.
  • 6陈曼琪.用拟弹性叠加双重迭代法解弹塑性接触问题[J].固体力学学报,1983,4(3):365-374.
  • 7张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1988:48—55.
  • 8Underhill W R L,Dokainis M A, Oravas G E. A method for contact problems usingvirtual elements[J]. Comput Meth Appl Mech Engng,1997,143: 229~247.
  • 9Simo J C,Wrigger P,Tayor R L. A perturbed Lagrangian formulation for the finiteelement solution of contact problems[J]. Comput Meth Appl Mech Engng, 1985,50:163~180.
  • 10Haug D,Saxce G. Frictionless contact of elastic bodies by finite element methodand mathematical programming technique. Comput Struct, 1980,11: 55~67.

共引文献89

同被引文献68

引证文献13

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部