期刊文献+

基于局域波分解的非参数概率密度估计

Nonparametric probability density estimation based on local wave decomposition
下载PDF
导出
摘要 局域波分解在提取信号趋势方面具有异乎寻常的效果.根据局域波缓变趋势提取算法,在小波概率密度估计思路的基础上,结合密度估计的直方图法,建立了局域波概率密度估计新方法.此方法能有效去除样本数据直方图中的高频成分,获得低频趋势,即概率密度.在混合高斯概率密度估计中的应用表明,对于无断点的密度函数,其具有计算简单、精度较高的优点. Local wave decomposition is good at accurate trend extracting.Therefore,based on the algorithm of slow-varying trend extracting of local wave method,as well as wavelet probability density estimation method and histogram method,a new probability density estimation method is presented.The proposed method can get rid of high frequency components of histogram and obtain the low frequency trend,i.e.probability density.The application of this method to Gaussian mixture model density estimation proves the advantages of the approach for non-breakpoint density function estimation.And it is easier in computation and more accurate.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第6期1024-1027,共4页 Journal of Dalian University of Technology
关键词 密度估计 局域波分解 经验模式分解 小波密度估计 density estimation local wave decomposition empirical mode decomposition wavelet density estimation
  • 相关文献

参考文献8

  • 1BAHL L R, BROWN P F, DE SOUZA P V, etal. A new algorithm for the estimation of hidden Markov model parameters [C] Conference on Acoustics, Processing. New York:IEEE, //IEEE International Speech and Signal 1988:493-496.
  • 2张炤,张素,章琛曦,陈亚珠.基于支持向量机的概率密度估计方法[J].系统仿真学报,2005,17(10):2355-2357. 被引量:24
  • 3HU Yu-suo, CHEN Hua, LOU Jian-guang, etal. Distributed density estimation using non-parametric statistics [C] // The 27th International Conference on Distributed Computing Systems. Toronto: IEEE, 2007:25-27.
  • 4马孝江 余伯 张志新.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13(5):219-224.
  • 5HUANG N E, SHEN Z, LONG S R, etal. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society London A, 1998, 454:903-995.
  • 6FLANDRIN P, RILLING G, GONCALVES P. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing Letters, 2004, 11(2) :112-114.
  • 7FLANDRIN P, GONCALVES P, RILLING G. Detrending and denoising with empirical mode decompositions [C]//Proceedings of the European Conference on Signal Processing. Vienna: EURASIP, 2004:1581-1584.
  • 8MOHAMED R M, EL-BAZ A, FARAG A A. Probability density estimation using advanced support vector machines and the expectation maximization algorithm [J]. International Journal of Signal Processing, 2005, 1:185-188.

二级参考文献4

  • 1Vapnik V, Mukherjee S. Support Vector Method for Multivariate Density Estimation [M]. Advances in Neural Information Processing Systems, pp 659-665, MIT Press. 2000.
  • 2Weston, J. Gammerman, A. Stitson, M.O. Vapnick, V. Vovk, V.Watkins, C. Support Vector Density Estimation [M]. Advances in Kernel Methods, MIT Press. 1999.
  • 3Fukunaga, K. and Hayes, R.R. The Reduced Parzen Classifier [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989, 11(4): 423-425.
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部