期刊文献+

基于神经网络算法与液体蛋白芯片指纹图谱建立矽肺早期诊断模型 被引量:2

Diagnostic Prediction of Early Silicosis Patients Using Neural Network and MALDI-TOF-MS in Serum
原文传递
导出
摘要 应用磁珠分选和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)联合技术检测,获得了79例矽尘暴露人群和25例健康对照样本的血清蛋白质谱,从矽尘暴露人群与健康对照组中筛选出7个共有的蛋白质谱差异峰,结合人工神经网络(ANN)建立早期矽肺患者诊断模型,用建立的诊断模型进行盲法检测,该诊断模型的特异性为84.52%,敏感性为93.69%,准确率为91.35%。在矽尘暴露各组和健康对照组之间进一步建立了神经网络辨别模型,对无尘肺0期、无尘肺0+期和Ⅰ期矽肺组的正确区分率分别达到89.23%、94.20%和92.37%。 Serum of 79 workers exposed to silica and 25 healthy controls cases were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS).7 protein peaks were selected and used by artificial neural network(ANN) to establish a diagnostic model.A blinded test showed that accuracy,sensitivity and specificity were 91.35%,93.69%,and 84.52%,respectively.The diagnostic pattern was also established to distinguish each stage of silica-exposed population.The diagnostic pattern worked excellently with 89.23%,94.20% and 92.37% of accurate rate for classifying phase 0,phase 0+,and phaseⅠof silicosis,respectively.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第1期142-147,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金面上项目资助(30771788) 天津市卫生局科技基金资助项目(06KG10)
关键词 人工神经网络 矽肺 生物标记物 血清蛋白质谱 Artificial neural network(ANN) Silicosis Biomarker Protein profiling of serum
  • 相关文献

参考文献13

  • 1中华人民共和国国务院新闻办公室.卫生部等通报中国职业病防治情况及今后重点工作[R/OL].(2006-04-24)[2009-09-23].http://www.sclo.gov.cn/xwfbh/gbwxwfbh/xwfbh/wsb/200905/t314075.htm.
  • 2CHENG A J, CHEN L C, CHIEN K Y, et al. Oral cancer plasma tumor marker identified with bead-based affinity-frac- tionated proteomic technology[J]. Clinical Chemistry,2005, 51(12) :2236.
  • 3ZHANG Z, BARNHILL S D, ZHANG H, et al. Combina- tion of multiple serum markers using an artificial neural net- work to improve specificity in discriminating malignant from benign pelvic masses * 1[J]. Gynecologic Oncology, 1999,73 (1):56-61.
  • 4郭晶,孙伟娟.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 5王静,鲁世红,于长生,余国庆.神经网络和有限元方法在两轴柔性滚弯中的应用[J].机械科学与技术,2006,25(9):1056-1058. 被引量:4
  • 6刘耦耕,贺素良.BP神经网络结构参数的计算机自动确定[J].计算机工程与应用,2004,40(13):72-74. 被引量:16
  • 7BLACKLEDGE J A, ALEXANDER A J. Polyethylene mem-hrane as a sample support for direct matrix-assisted laser de- sorption/ionization mass spectrometric analysis of high mass proteins. [J]. Analytical Chemistry, 1995,67(5) :843.
  • 8HORNIK K. Approximation capabilities of muhilayer feed- forward networks[J]. Neural Networks, 1991, 4 (2): 251- 257.
  • 9CALDWELL R L, CAPRIOLI R M. Tissue profiling by mass speetrometry[J].Molecular & Cellular Proteomics, 2005,4 (4) :394.
  • 10Jie-KaiYu,Yi-DingChen,ShuZheng.An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics[J].World Journal of Gastroenterology,2004,10(21):3127-3131. 被引量:30

二级参考文献58

  • 1Rumelhat D E,Hinton D E.Learning internal representations by back propagation error[J].Nature, 1986 ;323(9) :533~536
  • 2Magnitskii N A.Some new approaches to the construction and learning of artificial neural networks[J].Computational Mathematics and Modeling, 2001; 12(4): 293~304
  • 3Alexander G P,Bentito F A.An accelerated learning algorithm for multi-layer perceptron network[J].IEEE Trans on Neural Network,1994:5(3) :493~497
  • 4廖晓昕.现代数学手册(经典数学卷)[M].武汉:华中科技大学出版社,2001..
  • 5王国俊 施光燕.现代数学手册(经济数学卷)[M].武汉:华中科技大学出版社,2001..
  • 6Koike A, Takagi T. Prediction of protein-protein interaction sites using support vector machines. Protein Eng Des Sel 2004;17:165-173.
  • 7Church TR, Yeazel MW, Jones RM, Kochevar LK, Watt GD,Mongin SJ, Cordes JE, Engelhard D. A randomized trial of direct mailing of fecal occult blood tests to increase colorectal cancer screening. J Natl Cancer Inst 2004; 96:770-780.
  • 8Kornek GV, Depisch D, Rosen HR, Temsch EM, Scheithauer W.Comparative analysis of CA72-4, CA195 and carcinoembryonic antigen in patients with gastrointestinal malignancies. J Cancer Res Clin Oncol 1992; 118:318-320.
  • 9Posner MR, Mayer RJ. The use of serologic tumor markers in gastrointestinal malignancies. Hematol Oncol Clin North Am 1994; 8:533-553.
  • 10Ohuchi N, Takahashi K, Matoba N, Sato T, Taira Y, Sakai N,Masuda M, Mori S. Comparison of serum assays for TAG-72,CA19-9 and CEA in gastrointestinal carcinoma patients. Jpn J Clin Oncol 1989; 19:242-250.

共引文献84

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部