期刊文献+

不确定观测线性离散随机系统白噪声估值器

White Noise Estimators for Linear Discrete-Time Stochastic Systems with Uncertain Observations
下载PDF
导出
摘要 在网络控制系统和传感器网络中,可能的传感器观测数据丢失使得系统的观测具有不确定性。应用新息分析方法,对传感器具有数据丢失的不确定观测线性离散随机系统,提出了统一和通用的白噪声估计算法,包括输入白噪声估值器和观测白噪声估值器。可统一处理传感器具有数据丢失的白噪声的最优滤波、预报和平滑问题。同时,给出了稳态白噪声估值器和相应的Wiener白噪声估值器。当没有数据丢失时,所得的结果恰是以往基于完整观测数据的白噪声估值器。仿真研究验证了算法的有效性。 In networked control systems and sensor networks,possible observation data losses of sensors make the observations of systems uncertain.The unified and universal white noise estimation algorithms are developed for linear discrete-time stochastic systems with uncertain observations due to data loss of sensors by applying the innovation analysis approach,which include input white noise estimators and observation white noise estimators.They can handle the optimal filtering,prediction and smoothing problems for white noise in a unified framework in the case of observation data loss of a sensor.The steady-state white noise estimators and corresponding Wiener estimators are also given.When there is no data loss,the proposed results are just reduced to the previous white noise estimators based on complete observation data.A simulation verifies the effectiveness of the proposed algorithms.
作者 孙书利 张腾
出处 《黑龙江大学工程学报》 2010年第4期114-121,共8页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金资助(60874062) 教育部科学技术研究重点项目资助(209038)
关键词 数据丢失 不确定观测 白噪声估值器 稳态估值器 Wiener估值器 data loss uncertain observation white noise estimator steady-state estimator Wiener estimator
  • 相关文献

参考文献1

二级参考文献6

  • 1秦超英,戴冠中.估计动态系统噪声的平滑算法[J].控制理论与应用,1993,10(2):205-211. 被引量:2
  • 2MENDEL J M. White-noise estimators for seismic data processing in oil exploration [J]. IEEE Trans on Automatic Control, 1977, 22(5):694 - 706.
  • 3MENDEL J M. Optimal Seismic Deconvolution : an estimation-based approach [M]. New York: Academic Press, 1983.
  • 4DENG Z L, ZHANG H S, LIU S J, et al. Optimal and self-tuning white noise estimators with applications to de, convolution and filtering problems [J]. Automatica, 1996,32(2): 199 - 216.
  • 5DENG Zili. Optimal Filtering Theory and Its Applications, Modern Time Series Analysis Method [M]. Harbin: Harbin Institute of Technology Press,2000(in Chinese)
  • 6ANDERSON B D O, MOORE J B. Optimal Filtering [ M ]. Englewood Cliffs,NJ:Prentice-Hall, 1979.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部