期刊文献+

虚时间步长法对Dirac方程演化的优化

Optimization of the Imaginary Time Step Evolution for the Dirac Equation
下载PDF
导出
摘要 本文利用虚时间步长法(ITS)演化由Dirac方程导出的Schr dinger-like方程和电荷共轭Schr dinger-like方程,得到在Fermi和Dirac海中的12C的单粒子能级,并讨论演化的时间步长、空间大小和格点间距对ITS演化收敛性的影响。为了保证ITS演化收敛到"精确"解,对于给定的单粒子能级,演化的时间步长必须小于"临界"时间步长Δtc.相对于单粒子能级的能量,"临介"时间步长Δtc对量子数|κ|更加敏感。对于弱束缚状态,收敛结果要与"精确"解一致,需要相对较大的空间大小。无论是深束缚或弱束缚状态,对于不同的格点间距,ITS演化的收敛结果变化不大。在以后的自洽计算中,可以应用这些结论来优化演化过程。 The convergence for the Imaginary Time Step(ITS) evolution with time step,box size,and mesh size are investigated by performing the ITS evolution for the Schrdinger-like or charge-conjugate Schrdinger-like equation deduced from Dirac equation for the single-particle levels of 12C in both the Fermi and Dirac seas.For the guaranteed convergence of the ITS evolution to the "exact" results,the time step should be smaller than a "critical" time step Δtc for a given single-particle level.The "critical" time step Δtc is more sensitive to the quantum numbers |κ| than to the energy of the single-particle level.For the weakly bound states,in order to reproduce the exact single-particle energies,relatively large box size is required.While for both the weakly and deeply bound states,the ITS evolutions are less sensitive to the mesh size.The conclusions are very helpful for optimizing the evolution procedure in the future self-consistent calculations.
作者 李芳琼 蔡立
出处 《贵州大学学报(自然科学版)》 2010年第6期25-28,67,共5页 Journal of Guizhou University:Natural Sciences
基金 贵州省科技厅自然科学基金资助(黔科合J字[2010]2135号)
关键词 狄拉克方程 类薛定谔方程 虚时间步长法 收敛性 Dirac equation Schrdinger-like equation imaginary time step method convergence
  • 相关文献

参考文献5

二级参考文献35

  • 1LI Jian1,ZHANG Ying1,YAO JiangMing1 & MENG Jie1,2 1 School of Physics,State Key Laboratory of Nuclear Physics and Technology,Peking University,Beijing 100871,China,2 School of Physics and Nuclear Energy Engineering,Beihang University,Beijing 100191,China.Magnetic moments of ^(33)Mg in the time-odd relativistic mean field approach[J].Science China(Physics,Mechanics & Astronomy),2009,52(10):1586-1592. 被引量:9
  • 2李剑,尧江明,孟杰.Deformation constrained relativistic mean-field approach with fixed configuration and time-odd component[J].Chinese Physics C,2009,33(S1):98-100. 被引量:5
  • 3Tanihata I et al 1985 Phys. Rev. Lett. 55 2676.
  • 4Bertulani C A, Hussein M S and Munzengerg G 2001 Physics of Radioactive Beams (New York: Nova Science).
  • 5Jonson B 2004 Phys. Rep. 389 1.
  • 6Jensen A S, Riisager K, Fedorov D V and Garrido E 2004 Rev. Mod. Phys. 76 215.
  • 7Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1.
  • 8Ring P 1996 Prog. Part. Nucl. Phys. 37 193.
  • 9Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101.
  • 10Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S 2006 Prog. Part. Nucl. Phys. 57 470.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部