期刊文献+

浓缩池连续沉降的数学模型研究及应用

下载PDF
导出
摘要 根据动力沉降理论,建立浓缩池内絮凝浆液连续沉降过程的一种新的数学模型。模型是基于一个变截面积单元,控制方程是一个标量,是强退化抛物方程,所涉及的对流和扩散通量都是由深度变量的不连续参数决定。模型采用一个稳定的有限差分格式。数例表明,该模型切实描述了浓缩池内絮凝沉降的动态。
出处 《能源与环境》 2010年第6期7-8,共2页 Energy and Environment
  • 引文网络
  • 相关文献

参考文献11

  • 1G.J.Kynch.A theory of sedimentation,Trans.Farad.Soc.,48 (1952).
  • 2J.F.Richardson and W.N.Zaki.Sedimentation and fluidization: Part Ⅰ, Trans.Instn.Chem.Engrs. (London), 32 (1954).
  • 3R.Burger,W.L.Wendland,and F.Concha.Model equations for gravita- tional sedimentation-consolidation processes,ZAMM Z.Angew.Math. Mech.,80 (2000).
  • 4S.Berres,R.Burger,K.H.Karlsen,and E.M.Tory,Strongly degenerate parabolichyperbolic systems modeling polydisperse sedimentation with compression, SIAM J.Appl.Math, 64 (2003).
  • 5R.Bilrger,K.H.Karlsen,C.Klingenberg,and N.H.Risebro,A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units, Nonlinear Anal.Real World Appl.,4 (2003).
  • 6R.Blirger, K.H.Karlsen, and N.H.Risebro, A relaxation scheme for con- tinuous sedimentation in ideal clarifier-thickener units,Comput.Math. Appl. ,to appear.
  • 7B.Cockbum and C.-W.Shu,The local discontinuous Galerkin method for time-dependen Convection-diffusion problems,SIAM J.Numer. Anal. ,35 (1998).
  • 8F.Bouchut,F.R.Guarguaglini,and R.Natalini,Diffusive BGK approxi- mations for nonlinear multidimensional parabolic equations,Indiana Univ.Math.J. ,49 (2000).
  • 9D.Aregba-Driollet,R.Natalini,and S.Tang,Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems,Math.Comp.,73 (2004).
  • 10B.Engquist and S.Osher,One-sided difference approximations for nonlinear conservation la-ws, Math.Comp., 36 ( 1981 ).
;
使用帮助 返回顶部