期刊文献+

基于混合模型的运动目标检测算法

Hybrid model based on the target motion detection algorithm
下载PDF
导出
摘要 自然界中复杂的环境对视频监控系统有一定的干扰,对运动物体的检测也将产生显著的影响,通过分析光照变化、背景干扰等现象对运动目标的检测的影响,本文提出了一种能适应环境变化的混合模型运动目标检测算法,该算法结合帧间差分法和混合高斯模型算法的优点,将帧差法作为进行高斯背景减法的指导,既能得到较高的灵敏度又能进一步提高检测效果,提高了算法时效性和鲁棒性,通过仿真实验,达到了预期的实验目的,证明了算法的可靠性与实时性。 In the nature of the complex environment has certain interference to video monitoring system, The detection of moving objects which will significantly impact. Through the analysis of illumination change, background interference phenomenon of moving targets detectio, This paper puts forward a kind of adaptive hybrid model target motion detection algorithm. The algorithm combines frame difference method and the advantages of gaussian mixture model algorithm, The frame difference method as the Gaussian background subtraction guidance, both to obtain high sensitivity and can further improve the detection results,To improve the timeliness and robustness of the algorithm. To achieve the desired purpose of the experiment. Through the simulation experiment proved that the algorithm of reliability and performance.
出处 《电子测试》 2011年第1期27-30,77,共5页 Electronic Test
关键词 运动目标检测 光照变化 背景影响 帧间差分 混合高斯模型 motion detection. Illumination change Background Frame difference The gaussian mixture model
  • 相关文献

参考文献6

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2T.Horprasert,D.Harwood,and L.S.Davis," A Statistical Approach for Real-Time Robust Background Subtraction and Shadow Detection," Proc.IEEE In'l Conf.Computer Vision,2005.
  • 3K.Subramaniam,S.S.Daly, Wavelet transforms for use in motion detection and tracking application, Seventh intemational confenence on image processing and ifs applications, 20072:711-715.
  • 4S.Araki,T.Matsuoka, Real-time wacking of multiple moving object in a moving camera image sequences using robust statistics, Fourteenth International Conference on Pattern Recongnition, 20042:1433-1435.
  • 5郑江滨,张艳宁,冯大淦,赵荣椿.视频监视中运动目标的检测与跟踪算法[J].系统工程与电子技术,2002,24(10):34-37. 被引量:31
  • 6柯颖智.数字视频监控技术[J].现代电视技术,2004(6):152-157. 被引量:6

二级参考文献109

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部