期刊文献+

基于神经网络的期铜价格趋势预测研究 被引量:1

Study on the Forecasting of Copper Future Price Trend based on Neural Network
下载PDF
导出
摘要 运用X-12-ARIMA季节调整方法,对上海交易所三月期铜月平均价格进行季节性调整,消除了季节因素和不规则因素对铜价的影响。针对季节调整后序列,分别建立了BP、RBF、Elman等神经网络模型,并对期铜价格进行预测。预测效果比较说明,与传统的神经网络相比,Elman神经网络模型具有收敛速度快、预测精度高的特点,能在期铜价格预测方面取得较好的效果。 In this paper, X-12-ARIMA method is used to analyze seasonally fluctuation of month-mean prices of three-month futures copper in the Shanghai Stock Exchange, in order to eliminate the impact of seasonal factors and irregular factors. For the seasonally adjusted series, BP, RBF and Elman neural network models are established, respectively. Then, the three models are used to predict futures copper prices. The predicted results indicate that Elman neural network model has faster convergence speed and higher prediction accuracy than traditional neural networks, and it can achieve better results in the forecasting of futures copper prices.
出处 《长沙理工大学学报(社会科学版)》 2011年第1期34-37,共4页 Journal of Changsha University of Science and Technology:Social Science
基金 教育部人文社会科学研究青年基金项目(08JC790004) 北京市属市管高等学校人才强教计划资助项目(PHR20110869) 北京市教委学科与研究生教育专项基金(PXM2010_014212_093659)
关键词 神经网络模型 X—12-ARIMA方法 期铜价格 预测 neural network models X- 12- ARIMA futures copper prices forecasting
  • 相关文献

参考文献7

二级参考文献48

  • 1黄海南,钟伟.GARCH类模型波动率预测评价[J].中国管理科学,2007,15(6):13-19. 被引量:38
  • 2蒋小平.基于增量模型的变极性测量方法的研究和应用[J].微计算机信息,2005,21(06Z):85-87. 被引量:1
  • 3Simon Stevenson, "A comparison of the forecasting ability of ARIMA models", Journal of Property Investment &Finance, vol. 25, no. 3 ( January 2007 ), pp. 223 - 240.
  • 4Contreras, J. ," ARIMA models to predict next -day electricity prices Power Systems",IEEE Transactions , vol. 18, no. 3, (August 2003 ) ,pp. 1014 - 1020.
  • 5Md Zakir Hossain , Quazi Abdus Samad, "ARIMA model and forecastirrgwith three types of pulse prices in Bangladesh: a case study", International Journal of Social Economics, vol. 33, no. 4 ( November 2006 ), pp. 344 - 353.
  • 6Volkan. Ediger , Sertac. Akar, "ARIMA forecasting of primary energy demand by fuel in Turkey" ,Energy Policy,vol. 35 ,no. 35(March 2007) ,pp. 1701 - 1708.
  • 7Box, G. E.P. and Jenkins, G. M. , Time Series Analysis and Forecasting Control, holden - Day, 1976, p. 34.
  • 8Pankratz, A. , Forecasting with Univariate Box -Jenkins Models: Concepts and Cases, Detauw University Press, 1984 ,p. 89.
  • 9Zhang, G. P, "Time series forecasting using a hybrid ARIMA andneural network model", Neurocomputing, vol. 50, no. 3, (July 2001), pp. 159 - 175.
  • 10A.A. Stanislavsky, "FARIMA modeling of solar flare activity from empirical time series of soft X - ray solar emission", The Astrophysical Journal,vol. 693 ,no. 2 ( May 2009) ,pp. 1877 - 1882.

共引文献61

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部