摘要
设R为任意含幺交换环,Mn(R)为R上所有矩阵组成的结合R-代数。对于Mn(R)上线性变换φ,若存在线性变换φ′使得对任意x,y∈Mn(R)均有φ′xy=φxy+xφy,则称φ为Mn(R)上的拟导子。本文定出了当n≥3时Mn(R)上任一拟导子的具体形式,对导子的概念进行了推广。
Let R be an arbitrary commutative ring with identity. Denote by M (R) the associative R -algebra over R consisting of all n by n matrices. An invertible linear transformation φ on Mn (R) is called a quasi-derivation of it if there exists an invertible linear transformation φ' on Mn(R) such that φ'(xy) = φ(x)y + xφ(y) for Vx,y ∈ Mn(R). The aim of this paper is to give an explicit description on the quasi-derivations of Mo (R) when n≥ 3. Generalizes the notion of derivation to a more general case.
出处
《四川理工学院学报(自然科学版)》
CAS
2011年第1期29-31,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金
中央高校基本科研业务费专项资金(2010LKSX05)
关键词
矩阵代数
导子
拟导子
交(可)换环
matrices algebra
derivation
quasi-derivation
commutative ring