期刊文献+

基于数据流挖掘的交通流状态辨识方法研究 被引量:4

An Effective RTRC-TFD Method for Detecting Traffic Flow Using Data Stream Mining
下载PDF
导出
摘要 由于交通流的复杂性,使得基于交通流参数的交通流状态经典辨识算法的阈值设定十分困难,直接影响辨识效果和效率。文章根据交通流的特性,提出了一种自适应动态学习的分类算法RTRC-TFD,可将其应用于不同背景下交通流的数据流实时分类。实验结果表明:在考虑概念漂移和背景重现的条件下,RTRC-TFD相对于经典检测算法(增量式贝叶斯分类算法)具有更高的分类精度和更快的收敛性。 Aim. The introduction of the full paper points out what we believe to be the four characteristics of traffie flow that cause difficulties in determining the thresholds of massive traffic flow; in its last effective RTRC-T17D (recognizing and treating recurring context of traffic flow detection) method, which is ex- plained in section 1. The seven subsections of section 1 are: (1) traffic flow data stream model, (2) classification model, (3) time for context extension, (4) determination of context recurrence, whose detection algorithm framework is given in Fig. 1, (5) pattern of context change, (6) time for context extension, (7) algorithm for recogniz- ing and treating recurring context, whose procedural steps are given in Fig. 2: To verify the effectiveness of our method, Section 2 uses the measurement data in a report by U.S. Department of Transportationtgl to simulate our algorithm; the simulation results, presented in Figs. 3 through 9, and their analysis show preliminarily that when concept drift and recurring context are taken into consideration, our algorithm has better classification precision and convergence speed, thus being more effective for classifying real-time traffic flow data stream from various contexts than the conventional incremental Bayes classification algorithm.
作者 徐琳 曲仕茹
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第1期34-38,共5页 Journal of Northwestern Polytechnical University
基金 教育部博士点基金(20096102110027) 陕西省工业攻关项目(2008KD7-14)资助
关键词 交通流数据 分类算法 概念漂移 背景重现 traffic control, data mining, classifiation ( of information), algorithms, concept drift, recurring context
  • 相关文献

参考文献9

二级参考文献18

共引文献81

同被引文献38

  • 1王奈,徐建闽,温惠英,柯建雄.公路交通调查数据库软件的研究与设计[J].计算机应用研究,2004,21(8):175-177. 被引量:2
  • 2陈德望.基于模糊聚类的快速路交通流状况分类[J].交通运输系统工程与信息,2005,5(1):62-67. 被引量:34
  • 3周永华,陆化普.交通流数据处理系统的设计与开发[J].交通与计算机,2005,23(5):1-4. 被引量:2
  • 4宋久擎,黄亚楼,康叶伟,林立.智能交通系统中的数据处理与分析[J].计算机工程与应用,2006,42(8):215-219. 被引量:5
  • 5黄罡,张路,周明辉.构件化软件设计与实现[M].北京:清华大学出版社,2008.
  • 6MENON P K,TANDALE M D,KIM J,et al.A frameworkfor stochastic air traffic flow modeling and analysis[C]∥AIAA. 2010 AIAA Guidance, Navigation, and ControlConference.Reston:AIAA,2010:1-28.
  • 7HU Jun,WU Zhen-ya.Research on the net amount of airtraffic network[C]∥SPIE.2012International Conference onGraphic and Image Processing.Bellingham:SPIE,2013:1-7.
  • 8ZHANG Hong-hai,XU Yan,YANG Lei,et al.Macroscopicmodel and simulation analysis of air traffic flow in airportterminal area[J].Discrete Dynamics in Nature and Society,2014,2014:1-15.
  • 9REYNOLDS T G.Air traffic management performance assessmentusing flight inefficiency metrics[J].Transport Policy,2014,34:63-74.
  • 10HOFFMAN B,KROZEL J,PENNY S,et al.A cluster analysisto classify days in the national airspace system[C]∥AIAA.2003AIAA Guidance,Navigation,and Control Conference andExhibit.Reston:AIAA,2003:1-12.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部