期刊文献+

基于粒子滤波和优化TVAR模型的时频分析算法 被引量:1

A New and Better Time-Frequency Estimation Algorithm that Combines Particle Filter with Optimal Time-Varying Auto-Regressive(TVAR) Model
下载PDF
导出
摘要 传统的卡尔曼滤波(KF)或时变参数自回归(TVAR)模型对非高斯和强非平稳信号处理无能为力,其算法往往跟踪不上频率的变化。粒子滤波能够处理非线性/非平稳问题,并与TVAR模型结合可获得较好的时频跟踪性能。然而,巨大的计算量是粒子滤波的主要问题。由于粒子滤波通常依赖于大量的粒子数目,尤其是估计量维数较高时,会产生较大的计算负荷。文章提出了一种基于优化TVAR模型结合粒子滤波的时频分析算法,实现了对非平稳、非高斯信号时频谱的准确估计,通过优化的TVAR模型跨过时变参数而直接以频率为估计量,并动态检测频率成分个数,降低估计量维数,从而比传统方法减低了一半以上的计算复杂度。通过仿真信号实验证明,文中算法时频分析精准度明显优于传统算法,并较大幅度地改善了计算性能。 The traditional Kalman Filter (KF) or TVAR model works, in our opinion, unsatisfactorily for the non- Gaussian and non-stationary signals, especially its slow response to the quickly shifting frequencies. So we propose what we believe to be a new and better algorithm, which is explained in sections 1, 2 and 3. Section 1 points out that the particle filter relies on too large a number of particles, thus causing heavy computational load. Section 2 u- ses the optimal TVAR model instead of time-varying parameters to directly estimate the frequencies of the non- Gaussian and non-stationary signals. To dynamically detect the number of frequencies and reduce the number of estimation dimensions, section 3 proposes our time-frequency estimation algorithm that combines the particle filter with the optimal TVAR model. Section 4 generates the non-stationary signal that has multiple spectral components and then simulates our algorithm. The simulation results, given in Figs. 4 and 5, demonstrate preliminarily that, compared with the traditional methods, our algorithm can reduce more than one half of computational and achieve better estimation accuracy. complexity
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第1期118-122,共5页 Journal of Northwestern Polytechnical University
关键词 粒子滤波 时频估计 优化TVAR 模型 signal processing, estimation, Kalman filtering, algorithms, time-frequency, optimal TVAR (time-va-rying auto-regressive) model
  • 相关文献

参考文献10

  • 1Grenier Y. Time-Dependent ARMA Modeling of Nonstationary Signals. IEEE Trans on Signal Processing, 1983,31 (4) : 899 -911.
  • 2Hall M. A Time-Varying Parametric Modeling of Speech. Proc IEEE Decision and Control, 1997,16( 1 ):1085 - 1091.
  • 3Sanjeev Arulampalam M, Maskell S, Gordon N, Clapp T. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2) : 174 - 188.
  • 4Andrieu C, Davy M, Doucet A. Efficient Particle Filtering for Jump Markov Systems Application to Time-Varying Autoregressions. IEEE Trans on Signal Processing, 2003, 51 (7) : 1762 - 1770.
  • 5Zheng Y, Tay D B H, Li L. Signal Extraction and Power Spectrum Estimation Using Wavelet Transform Scale Space Filtering and Bayes Shrinkage. Signal Processing, 2000, 80(8): 1535 - 1549.
  • 6Ephraim Y, Merhav N. Hidden Markov Processes. IEEE Trans on Inform Theory, 2002, 48(6) : 1518 - 1569.
  • 7Nehorai A. A Minimal Parameter Adaptive Notch Fiher with Constrained Poles and Zeros. ICASSP, 1985, 1185 - 1188.
  • 8Li G. A Stable and Efficient Adaptive Notch Filter for Direct Frequency Estimation. IEEE Trans on Signal Processing, 1997, 45 (8) : 2001 -2009.
  • 9Cho N I, Lee S U. On the Adaptive Lattice Notch Fiher for the Detection of Sinusoids. IEEE Trans on Analogy and Digital Signal Processing, 1993, 40(7):405-416.
  • 10Ikoma N, Maeda H. Nonstationary Spectral Peak Estimation by Monte Carlo Filter. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000, 245 - 250.

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部