期刊文献+

基于空间语义对象混合学习的复杂图像场景自动分类方法研究 被引量:5

Spatial Semantic Objects-based Hybrid Learning Method for Automatic Complicated Scene Classification
下载PDF
导出
摘要 场景分类是将多幅图像标记为不同语义类别的过程。该文针对现有方法对复杂图像场景分类性能欠佳的不足,提出一种新的基于空间语义对象混合学习的复杂图像场景分类方法。该方法以多尺度分割得到的图像对象而非整幅图像为主体进行产生式语义建模,统计各类有效特征挖掘对象的类别分布信息,并通过空间金字塔匹配,构建包含层次数据和语义信息的中间向量,弥补语义鸿沟的缺陷,训练中还结合判别式学习提高分类器的可信性。在实验数据集上的结果表明该方法具备较高的学习性能和分类精度,适用于多种类型和复杂内容图像的解译,具有较强的实用价值。 Scene image classification refers to the task of grouping different images into semantic categories.A new spatial semantic objects-based hybrid learning method is proposed to overcome the disadvantages existing in most of the relative methods.This method uses generative model to deal with the objects obtained by multi-scale segmentation instead of whole image,and calculates kinds of visual features to mine the category information of every objects.Then,an intermediate vector is generated using spatial-pyramid matching algorithm,to describe both the layer data and semantic information and narrow down the "semantic gap".The method also combines a discriminative learning procedure to train a more confident classifier.Experimental results demonstrate that the proposed method can achieve high training efficiency and classification accuracy in interpreting manifold and complicated images.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第2期347-354,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(41001285)资助课题
关键词 图像处理 场景分类 语义对象 混合学习 金字塔匹配 Image processing Scene classification Semantic object Hybrid learning Pyramid matching
  • 相关文献

参考文献30

  • 1程环环,王润生.面向自然场景分类的贝叶斯网络局部语义建模方法[J].信号处理,2010,26(2):234-240. 被引量:5
  • 2顾志伟,吴秀清,荆浩,尹东,王艺元.一种基于特征选择的医学图像检索方法[J].中国生物医学工程学报,2007,26(1):30-34. 被引量:9
  • 3杨俊,王润生.遥感道路的场景感知与分类检测[J].计算机辅助设计与图形学学报,2007,19(3):334-339. 被引量:12
  • 4Szummer M and Picard R. Indoor-outdoor image classification. IEEE Int. Workshop on Content-based Access of Image and Image and Video Databases, Bombay, 1998: 42-51.
  • 5Vailaya A, Figueiredo M, Jain A, and Zhang H. Image classification for content-based indexing. IEEE Transaction on Image Processing, 2001, 10(1): 117-130.
  • 6Greene M R and Oliva A. Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cognitive Psychology, 2009, 58(2): 137-176.
  • 7Oliva A and Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, 2001, 42(3): 145-175.
  • 8Vogel J and Schiele B. Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision, 2007, 72(2): 133-157.
  • 9Fei-fei Li and Perona P. A bayesian hierarchical model for learning natural scene categories. Proc. of IEEE Computer Vision and Pattern Recognition, San Diego, USA, 2005, 2: 524-531.
  • 10Bosch A, Munoz X, and Marti R. A review: which is the best way to organize/classify image by content? Image and Vision Computing, 2007, 25(6): 778-791.

二级参考文献39

  • 1A. Bosch, X. Muonz, and R. Marti, "A review: Which is the best way to organize/classify images by content?," Image and Vision Computing, vol. 25, pp. 778-791, 2007.
  • 2L. Fei-Fei and P. Perona, "A bayesian hierarchical model for learning natural scene categories," presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA, 2005.
  • 3S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006.
  • 4J. Fan, Y. Gao, H. Luo, and G. XU, "Statistical modeling and conceptualization of natural images," PatternRecognition, vol. 38, pp. 865-885, 2005.
  • 5J. Vogel and B. Schiele, " Natural scene retrieval based on a semantic modeling step," presented at International Conference on Image and Video Retrieval, Dublin, Ireland, 2004.
  • 6J. Vogel and B. Schiele, " Semantic Modeling of Natural Scenes for Content-Based Image Retrieval," International Journal of Computer Vision, vol. 72, pp. 133-157, 2007.
  • 7A. Mojsilovic, J. Gomes, and B. Rogowitz, "Isee: Perceptual features for image library navigation," presented at SPIE Human vision and electronic imaging, San Jose, California, 2002.
  • 8T. V. Pham and A. W. M. Smeulders, " Learning spatial relations in object recognition," Pattern Recognition Letters, vol. 27, pp. 1673-1684, 2006.
  • 9Y. Li and T. R. Bretschneider, "Semantic-Sensitive Satellite Image Retrieval," IEEE Trans. Geosci. Remote Sens. , vol. 45, pp. 853-860, 2007.
  • 10J. Pearl, Probabilistic reasoning in expert system: networks of plausible inference. San Francisco, California Morgan Kaufmann, 1988.

共引文献22

同被引文献212

  • 1周云才,张红民.利用多线程实现神经网络算法的可视化[J].长江大学学报(自然科学版),2005,2(10):320-322. 被引量:1
  • 2牛栋,李正泉,于贵瑞.陆地生态系统与全球变化的联网观测研究进展[J].地球科学进展,2006,21(11):1199-1206. 被引量:16
  • 3Wang Wu-di, Sun Xian, Qi Xiang, et al.. Automatic extraction method for complicated structure buildings in remote sensing images based on probabilistic latent semantic analysis model[C]. 2011 3rd International Conference on Computer Design and Applications (ICCDA), Xi'an, 2011: 450-454.
  • 4Soliman S and Mahmoud S. A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions[C]. The 8th International Conference on Informatics and Systems (INFOS), Cairo, 2012 181-187.
  • 5Fergus R, Perona P, and Zisserman A. A sparse object category model for efficient learning and exhaustive recognition[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 380-387.
  • 6Sun Hao, Sun Xian, Wang Hongqi, et al.. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 109 113.
  • 7Selvaraj K, Fathima A, and Vaidehi V. Multi-class objectdetection by part based approach[C]. 2012 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, 2012:114 118.
  • 8Zhang Huigang, Wang Junxiu, Bai Xiao, et al.. Object detection via foreground contour feature selection and part-based shape model[C]. 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, 2012: 2524-2527.
  • 9Li Yu, Sun Xian, Wang Hongqi, et al.. Automatic target detection in high-resolution remote sensing images using a contour-based spatial model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 886-890.
  • 10Mottaghi R. Augmenting deformable part models with irregular-shaped object patches[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Venue, 2012: 3116-3123.

引证文献5

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部