期刊文献+

分布式小卫星SAR多普勒解模糊成像 被引量:2

Doppler Ambiguity Suppression SAR Imaging Using Distributed Micro Satellites
下载PDF
导出
摘要 该文结合实际卫星轨道及地球自转特性,研究利用分布式小卫星丰富的空域信息解多普勒模糊,从而解决宽场景成像和方位高分辨之间的矛盾。提出建立子孔径坐标系,解决地球自转引起的星间回波不一致性并简化椭圆轨道的几何复杂性。建立子孔径坐标系包括两方面:一是将成像几何模型转换到地球固定坐标系下分析,此时地面场景静止,卫星轨道等效旋转;二是分孔径处理,针对每个子孔径建立坐标几何,经过误差补偿后小卫星轨道构型等效为固定基线且平行。对每个子孔径回波数据分别进行空域滤波解模糊处理后再进行孔径拼接,同时结合传统星载SAR成像算法实现大场景高分辨成像。最后以CARTWHEEL模型为例进行仿真,验证了该方法的有效性。 This paper focuses on the generation of wide-swath and high azimuth resolution image with the constellation of micro satellites in the condition of considering the effects of satellite ellipse orbit and earth rotation.The method of coordinate equivalent transformation to overcome the geometric complexity from ellipse orbit and earth rotation is proposed,which includes two aspects: the first is the transformation from earth inertial coordinate to earth fixed coordinate.In this way,the illuminated swath is still and the location vectors of satellites are equivalent rotating.The second is separation of the whole aperture into several sub-apertures and building the relative coordinates in which parallel tracks with constant baseline are obtained and the involved approximation error is numeric analyzed.The Doppler ambiguity is suppressed in every sub-aperture coordinate.Through assembling the sub-apertures,conventional algorithm can be applied to focus the wide-swath and high resolution image.Setting CARTWHEEL as an example,numeric simulation result confirms the validity of the method.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第2期355-362,共8页 Journal of Electronics & Information Technology
基金 高校基本科研业务费(JY10000902026)资助课题
关键词 分布式小卫星 合成孔径雷达 宽测绘带 多普勒解模糊 子孔径坐标系 Distributed micro satellite SAR Wide swath Doppler ambiguity suppression Sub-aperture coordinate
  • 相关文献

参考文献11

  • 1Massonnet D. Capabilities and limitations of the interferometric Cartwheel[J]. IEEE Transactions on Geoscienee Remote Sensing, 2001, 39(3): 506-520.
  • 2Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122-135.
  • 3Callaghan G D and Longstaff I D. Wide swath spaceborne SAR using a quad element aray[J]. IEE Proceedings Radar Sonar and Navigation, 1999, 146(3): 159-165.
  • 4Goodman N A, Lin S C, Rajakrishna D, and Stiles J M. Processing of multiple receiver spaceborne arrays for wide-area SAR[J]. IEEE Transactions on Geoscience Remote Sensing, 2000, 40(4): 841-852.
  • 5Gebert N and Krieger G. Digital beamforming on receive: techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace Electronic Systems, 2009, 45(2): 564-592.
  • 6Gebert N and Krieger G. Azimuth phase center adaptation on transmit for high-resolution wide-swath SAR imaging[J].IEEE Geoscience Remote Sensing Letters, 2009, 6(4): 782-786.
  • 7Li Zheng-fang, Wang Hong-yang, Su Tao, and Bao Zheng. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience Remote Sensing Letters, 2005, 2(1): 82-86.
  • 8邢孟道,李真芳,保铮,王彤.分布式小卫星雷达空时频成像方法研究[J].宇航学报,2005,26(B10):70-76. 被引量:17
  • 9Aguttea J P. New designs or modes for flexible space borne SAR[C]. IGASS 2002, Toronto, Cannda, 2002, 1: 674-676.
  • 10王昕,朱岱寅,朱兆达.基于Chirp Scaling的双基SAR成像PFA算法研究[J].电子与信息学报,2009,31(7):1674-1678. 被引量:1

二级参考文献21

  • 1Cantafio L J. (Ed.). Space-based radar handbook. Artech House,1989.
  • 2Maurice Martin, Michael J. Distributed Satellite Missions and Technologies-The TechSat 21 Program, AIAA Space Technology Conference & Expostion 28-30 Sept. 1999 Albugquerque, NM,AIAA-99-4479, A99-42052.
  • 3Maurice Martin, Steve Kilberg. TechSat 21 and Revolutionizing Space Missions Using Microsatellites. American Institute of Aeronautics and Astronautics, SSC01-1-3.
  • 4Didier Massonnet. Capabilities and Limitations of the Interferometric Cartwheel. IEEE Trans. on GRS, 2001, 39( 1 ): 506-520.
  • 5Griffiths H D, Mancini P. Ambiguity Suppression in SARs Using Adaptive Array Techniques. IGARSS'91. 1015-1018.
  • 6Currie A, Brown M A. Wide-Swath SAR. IEE Proc. -Radar, Sonar Navig., 1992, 139(2): 122-135.
  • 7Callaghan G D, Longstaff I D. Wide-Swath Space-Borne SAR and Range Ambiguity. Radar 97, 1997,248-252.
  • 8Callaghan G D, Long staff I D. Wide-swath space-borne SAR using a quad-element array. IEE Proc. -Radar, Sonar Navig., 1999, 146( 1 ): 159-165.
  • 9Nathan A. Goodman, Sih Chung Lin, Devindran Rajakrishna, James M. Stiles. Processing of Multiple-Receiver Spaceborne Arrays for Wide-Area SAR. IEEE Trans. on GRS, 2002, 40(2) :841-852.
  • 10Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999.

共引文献16

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部