期刊文献+

基于随机集模型的MIMO-OFDM信道估计算法 被引量:4

An Estimation Algorithm of MIMO-OFDM Channels Based on RST
下载PDF
导出
摘要 在多径分量数确定的前提下,MIMO-OFDM系统采用传统的基于导频辅助和盲信道估计算法能获得较好性能。实际无线环境中,多径分量数目与幅度都是时变的,则传统信道估计方法不再适用。该文采用随机集理论建模MIMO-OFDM系统信道多径分量数的变化和MIMO信道。基于此模型提出了集中粒子空间重采样方法(CRS),在保留大概率粒子抽样样本的同时主动抛弃小概率抽样样本,以获得更为准确的真实样本逼近。并提出了基于集中重采样Rao-Blackwellised粒子滤波的信道估计方法(RBPFC)。仿真结果表明:所提出的RBPFC方法信道估计性能最好,基本Rao-Blackwellised粒子滤波方法次之但优于基本粒子滤波算法,卡尔曼滤波的信道估计方法性能最差。 The typical pilot-aided and blind estimation method for MIMO-OFDM channel can achieve good performance when the number of multi-path components is constant.However,in the practical wireless environment,the number of channel taps and amplitude are all unknown and time-varying in whole process,thus typical estimation methods are not suitable.In this paper,the channel-taps' varying condition and a new channel model are established by using RST theory.Based on this model,the re-sample method by Concentrating particle Resample Space(CRS) is proposed.By abandoning low probability samples and reserving high probability samples,more accurate approximation is obtained at each iteration.And then the channel estimation method using Rao-Blackwellised Particle Filtering with CRS(RBPFC) is proposed.Simulation results show that the performance of RBPFC is the best,the performance of Rao-Blackwellised particle filtering scheme follows but is better than that of the basic particle filtering scheme,and the performance of Kalman filter-based scheme is the worst.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第2期489-493,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872092)资助课题
关键词 信道估计 多输入多输出 正交频分复用 随机集 贝叶斯迭代 混合粒子滤波 Channel estimation MIMO OFDM Random SeT(RST) Bayesian recursive Rao-Blackwellised Particle Filtering(RBPF)
  • 相关文献

参考文献11

  • 1Barhumi I, Leus G, and Moonen M, et al.. Optimal training design for MIMO OFDM systems in mobile wireless channels [J]. IEEE Transaction on Signal Processing, 2002, 50(2): 174-188.
  • 2Bolcskei H, Gesbert D, and Paulraj A J, et al.. On the capacity of OFDM-based spatial multiplexing systems [J]. IEEE Transactions on Communications, 2002, 50(2): 225-234.
  • 3Bolcskei H, Heath R W, and Paalraj A J, et al.. Blind channel identification and equalization in OFDM-based multi-antenna systems [J]. IEEE Transaction on Signal Processing, 2003 , 50(1): 96-109.
  • 4Wang H and Chang P. On verifying the first order Markovian assumption for a Rayleigh fading channel [J].IEEE Transactions on Communications, 1996, 45(2): 353-357.
  • 5Vihola M. Rao-Blackwellised particle filtering in random set multitarget tracking [J]. IEEE Transaction on Aerospace and Electronic Systems, 2006, 54(11): 409-414.
  • 6Angelosante D, Biglieri E, and Lops M, et al.. Sequential estimation of OFDM channel [J]. IEEE Proceeding of Signal Processing, 2008, 53(8): 3238-3243.
  • 7Mahter R. Multi-target motion model [J]. SPIE, 1999,37(20): 47-57.
  • 8Schoukens J, Lataire J, and Pintelon R, et al.. Robustness lssues of the best linear approximation of a nonlinear system [J]. IEEE Transaction on Instrumentation and Measurement, 2009, 58(5): 1737-1745.
  • 9Chen R, Letaief K B. Channel estimation for space time coded OFDM systems in non sample spaced multipath channels[C]. Proc. IEEE Wireless Commun. Networking Conf. (WCNC), Sanya, China, Mar. 2002, 1: 61-66.
  • 10D Angelosante, Biglieri E, and Lops M. Sequential estimation of multipath MIMO-OFDM channels [J]. IEEE Transaction on Signal Processing, 2009, 53(8): 3167-3181.

同被引文献43

  • 1邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 2李畅怡,蒋婷婷,郑国莘.基于正交频分复用的超宽带无线通信中的信道估计技术[J].科学技术与工程,2006,6(8):960-963. 被引量:2
  • 3景源,殷福亮,曾硕.基于粒子滤波的MIMO-OFDM时变信道半盲估计[J].通信学报,2007,28(8):67-75. 被引量:12
  • 4BEEK J J,EDFORS O,SANDELL M,et al. On channel esti- mation in OFDM systems [J]. IEEE 45th Vehicular Technolo- gy Conference, 1996,25(2) : 923-927.
  • 5Larsen M D. Performance bounds for MIMO-OFDM channel estimation [ J ]. IEEE Transactions on Signal Processing, 2009, 57(5): 1901-1916.
  • 6Miyajima T,Zhi Ding. Subcarrier nulling algorithms for channel shortening in uplink OFDMA systems[ J]. IEEE Transactionson Signal Processing, 2012 , 60(5) : 2374-2385.
  • 7Feng Wan, Wei-Ping Zhu, Swamy M N S. Semiblind sparse channel estimation for MIMO-OFDM systems[ J]. IEEE Transac-tions on Vehicular Technology, 2011,60(6) : 2059-2582.
  • 8Al-Naffouri T Y, Dahman A A, Sohail M S, et al. Low-complexity blind equalization for OFDM systems with general constella-tions[ J] . IEEE Transactions on Signal Processing, 2012, 60( 12) : 6395-6407.
  • 9Al-Bayati A K S. Subspace-based blind channel estimation in nearly saturated downlink multicarrier code division multiple ac-cess systems[ J]. IET Communications, 2012 , 6(4) : 408-412.
  • 10Borching Su,Vaidyanathan P P. Subspace-based blind channel identification for cyclic prefix systems using few received blocks[J]. IEEE Transactions on Signal Processing, 2007,55(10) : 4979-4993.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部