摘要
研究了定义域为对角形的上三角无穷维Hamilton算子:H=的谱刻画及其可逆性;当A的剩余谱不含关于虚轴对称的点时,H的谱等于A的谱与A的谱关于虚轴对称分支的并集,并得到了H的预解集为空及其可逆的充要条件;作为结论的应用,得到当A为无穷维Hamilton算子时,H的点谱、剩余谱、连续谱和谱分别等于A的点谱、剩余谱、连续谱和谱.
This paper is concerned with the spectrum and invertibility of a class of infinite dimensional Hamiltonian operators described by H =[],where D(H)= D(A)×D(—A~*) and A is a linear operator in a Hilbert space.If residual spectrum of A excludes the symmetric point about imaginary axis,then the spectrum of H is composed of the spectrum of A and its symmetric points about imaginary axis.The sufficient and necessary conditions for the resolvent set of H to be empty and for H to be invertible are obtained. In particular,if A itself is a Hamiltonian operator,the point spectrum,residual spectrum, continuous spectrum of H is exactly same as those of A.
出处
《系统科学与数学》
CSCD
北大核心
2011年第1期57-64,共8页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10562002)
内蒙古自治区自然科学基金(200508010103)资助项目
关键词
算子矩阵
无穷维
HAMILTON算子
谱
Operator matrix
infinite dimensional
Hamiltonian operator
spectrum