摘要
定义了随机P矩阵和随机P_0矩阵,给出了矩阵为随机P矩阵或随机P_0矩阵的充要条件.研究了随机线性互补问题(SLCP)的矩阵为随机P矩阵时,期望残差方法(ERM)解集的有界性.得到了期望矩阵为P矩阵时,(ERM)解集非空有界.并且研究离散情形(ERM)与期望值方法(EV)解的关系,给出了(ERM)解唯一的条件.
The paper is concerned with the expected residual minimization formulation (ERM) of the stochastic P matrix linear complementarity problem.It is shown that the expected residual minimization formulation of this problem has a nonempty and bounded solution set when the involving matrix is a stochastic P matrix.The definition and some properties of a stochastic P_0 matrix are given.Moreover,we consider the discrete case and give a condition for the solution set of the ERM problem to be singleton.
出处
《系统科学与数学》
CSCD
北大核心
2011年第1期123-128,共6页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(F010406)资助课题
关键词
随机线性互补问题
随机P矩阵
期望残差(ERM)
随机P_0矩阵
Stochastic linear complementarity problem
stochastic P matrix
expected residual minimization formulation
stochastic P_0 matrix