摘要
一个基本的“Loewner矩阵-Hahael向量”关系被用以推导广义Loewner矩阵(不必为方阵,但对应于同一有理插值问题)的核结构定理与它的因子分解,此分解涉及到广义Cauchy-Vandermonde矩阵.
A foundational 'Loewner matrix- Hankel vector' connection is used to derive a kernel structure theorem for the generalized Loewner matrixs (not necesarily square) associated with a rational interpolation problem and a factorization for such matrices by means of generalized Cauchy- Vandermonde matrices.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第2期147-153,共7页
Journal of Beijing Normal University(Natural Science)
基金
教育部博士点基金
关键词
有理插值
广义
Loewner矩阵
核
因子分解
rational interpolation
generalized Loewner matrix
Hankel vector
pair of characteristic polynomials
generalized Cauchy-Vandermonde matrix